
Programming Design, Spring 2013

Suggested Solution for Midterm Exam
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

1. (a) False. The character type is actually a special type of integers.

(b) False. It is only required that a long int must be no shorter than an int and a short int

must be no longer than an int.

(c) True.

(d) True.

(e) True.

(f) False. The second comparison will not be performed.

(g) False. There will be a compilation error.

(h) False. It can be accessed only after its declaration.

(i) True.

(j) False. It returns the number of bytes allocated to arr.

2. (a) Function signatures are used to distinguish multiple functions having the same name. Because
when we invoke a function, we need to know which function to invoke before we determine the
return value, only the function name and parameter list are included in a function signature.

(b) Suppose we run the insertion sort algorithm on an array. After we find the correct place
to insert a value, we need to move all values after it for one position. This part cannot be
improved by binary search and in the worst case requires around k steps, where k is the
current length of the sorted sublist.

Note. In the future you will learn how to implement a list with a linked list. In that case, no
move is required. Nevertheless, you will see binary search is not doable on a linked list.

(c) The statements are delete [] ptr; and ptr = NULL;. The computer cannot automatically
release this space because it has no name to be recorded in the variable-address map.

(d) Once we do so, all programmers in the world may use clock_t to be the return type of the
function clock(). Even if in the future the data type of clock_t is modified in the C++
standard, as long as in <ctime> we still define clock_t with a typedef statement, no one
needs to modify her/his own program.

3. (a) 5.

(b) Unpredictable.

(c) Unpredictable.

(d) −1.

(e) 0.

(f) 1.

(g) 6.

(h) 0.

4. (a) The else statement in line has no if to be paired with.

(b) −55 and 1045.

(c) The program after rewritten is

1



1: int a;

2: cin >> a;

3: if(a == 0)

4: {

5: for(int i = 0; i <= 10; i++)

6: a += i;

7: if(a > 10)

8: a -= 10;

9: if(a == 55)

10: cout << a << endl;

11: else if(a < 55)

12: cout << a - 100 << endl;

13: else

14: cout << a + 100 << endl;

15: }

16: else

17: while(a > 0)

18: a -= 10;

19: cout << a + 1000 << endl;

5. (a) 16, 22 (as the average of 21 and 23), 20.5 (as the average of 20 and 21), 20.

(b) The four lists are

• (2, 6, 7, 9, 12, 16, 10, 15, 8),

• (2, 6, 7, 9, 10, 12, 16, 15, 8),

• (2, 6, 7, 9, 10, 12, 15, 16, 8), and

• (2, 6, 7, 8, 9, 10, 12, 15, 16).

(c) For point (xi, yi), we may define a “score” si = 1000xi + yi. As 0 ≤ yi ≤ 100, we may then
safely sort these points simply based on their scores.

(d) i. 21.

ii. The loop that calculate strange(6) is

int array[6];

array[0] = 1;

array[1] = 1;

for(int i = 2; i < 6; i++)

array[i] = array[i - 1] + 2 * array[i - 2];

After the execution of this loop, array[5] contains the value strange(6).

6. (a) The struct we define is

struct Complex

{

double real;

double imaginary;

void conjugate();

double absoluteValue();

};

(b) The implementation is

void Complex::conjugate()

{

imaginary = -imaginary;

}

(c) The implementation as a global function is

2



Complex multiplication(Complex n1, Complex n2)

{

Complex prod;

prod.real = n1.real * n2.real - n1.imaginary * n2.imaginary;

prod.imaginary = n1.imaginary * n2.real + n1.read * n2.imaginary;

return prod;

}

This function is not designed to be a member function because it is not an operation that
should be performed on a complex number.

(d) The implementation as a global function is

void findRoots(double a, double b, double c, Complex& root1, Complex& root2)

{

if(b * b - 4 * a * c >= 0)

{

root1.real = (-b + sqrt(b * b - 4 * a * c)) / (2 * a);

root1.imaginary = 0;

root2.real = (-b - sqrt(b * b - 4 * a * c)) / (2 * a);

root2.imaginary = 0;

}

else

{

root1.real = -b / (2 * a);

root1.imaginary = sqrt(-b * b + 4 * a * c)) / (2 * a);

root2.real = -b / (2 * a);

root2.imaginary = -sqrt(-b * b + 4 * a * c)) / (2 * a);

}

}

3


