Programming Design, Spring 2013
Suggested Solution to Homework 07

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

Problem 1

(a)
(b)

It will print out the execution time of those statements contained in the commented block.

Why do we need to cast endTime - stTime?

Both endTime and stTime are (long) integers. As CLK_TCK is also an integer, if none of these three
are cast into a fractional number, the division operator will return an integer, which may not be
accurate enough.

Problem 2

(a)

(b)

The output will be 8 and 3, where 8 is the largest number in the array and 3 is the index of 8 (with
the first number indexed as 0).

The function use a loop to check the value of every element once, from the first one to the last
one. Whenever a value is larger than its next value, it has the potential of becoming the maximum
number. The function then compare its with the currently maximum number to see if a replacement
should be performed. After the whole array is processed, the maximum value is found. More
importantly, instead of returning the value, the function returns a pointer pointing to this value.
This allows the calling function (the main function in this example) to output not only the maximum
value but also its index in the array.

The statement prints out the index of the maximum value in the array. ptrGMax stores the address
of the maximum value while value stores the address of the first element (indexed as 0). As
the difference is implemented to return the difference of indices, this statement prints out the
corresponding index of the address stored in ptrGMax.

The implementation is not efficient enough because it makes several unnecessary assignments
ptrLlMax = &value[i] and comparisons if (*ptrLMax > *ptrGMax). In the current implemen-
tation, once a value is larger than its next value, it will be treated as a candidate of the maximum
number. However, it is possible that it is smaller than the previous value. Therefore, we may
modify the outer comparison if (value[i] > value[i + 1]) to, e.g.,

if (valueli] > valueli + 1] && value[i] > valueli - 1])

for i > 1.

A new function is implemented below. Note that it is not implemented in the most efficient way.
Instead, it duplicates the idea of the original implementation.

void maxNoPtr (double value[], int arraylLen, double& gMax, int& maxIndex)

{
double 1Max = valuel[0];
gMax = value[0];
maxIndex = 0;

for (int 1 = 0; i < arraylLen - 1; i++)
{

if (valuel[i] > valueli + 1])



1Max = valuel[i];

if (1Max > gMax)

{
gMax = 1Max;
maxIndex = i;
¥
}
}
if (valuelarrayLen - 1] > gMax)
{
gMax = value[arraylen - 1];
maxIndex = arraylen - 1;
}
}
Problem 3

(50 points) Consider the program “PDSpl3_hw07_rand.cpp”. In this program, we implement two algo-
rithms for generating ARRAY_LEN nonrepeating random numbers from 0 to ARRAY_LEN - 1.

(a)
(b)

()

Omitted.

When the number is small, the execution times of the two algorithms are similar. When the number
becomes larger, however, the execution time of the bruteForce () is much larger than shuffle().

For bruteForce(), we try to generate random numbers one by one. When we want to generate
the 4th number, we first generate a random number and then compare it to all numbers we have
generated. If there is an overlapping, we regenerate a random number. This is why when there are
many existing numbers, generating a new nonrepeating random number is time consuming: It is
too easy to generate a number that has been generated.

For shuffle(), we use a different way. We first generate a sorted list containing values from 1 to
ARRAY_LEN, and then we “shuffle” the list. For iteration ¢, we swap value ¢ with value j, where j is
a randomly generated number. This in effect makes value ¢ something randomly drawn from the
whole pool of candidate values.

As we explained in the previous part, shuffle() is more efficient.

The new function is implemented below:

void bruteForceWhile (int arrayl[])
{
// in each iteration, set one value
int i = O;
while (i < ARRAY_LEN)
{
// try to generate a randome number
int theRand = rand() % ARRAY_LEN;

// check whether this number has been generated
bool hasRepeated = false;
for (int j = 0; j < i; j++)
{
if (theRand == arrayl[jl)



{
hasRepeated = true;
break;
}
}

// if not, set it; otherwise, try again
if (hasRepeated == false)
{

array[i] = theRand;

i++;

’

(f) When we set ARRAY_LEN to 32500, the program terminates successfully. However, when we set it
to 35000, it does not terminates. This is because the function rand () is implemented to return an
integer between 0 and 32767, and 35000 is larger than 32767. Because in the function shuffle(),
it is impossible to use rand () to generate a number that is unequal to all the first 32767 numbers,
the program will not terminate.



