
IM 1003: Programming Design

Introduction

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming design - Introduction 1 / 47

Ling-Chieh Kung

Department of Information Management

National Taiwan University

February 18, 2013

Outline

• Computer programs

• The C++ programming language

• The basic structure of C++ programs

• Formatting a C++ program

Ling-Chieh Kung NTU IM

Programming design - Introduction 2 / 47

Computer programs

• What are computer programs?

– The elements working in computers.

– Also known as software.

– A structured combination of data and instructions used to operate a

computer to produce a specific result.

Ling-Chieh Kung NTU IM

Programming design - Introduction 3 / 47

• Strength: High-speed computing, large memory, etc.

• Weakness: They cannot “think” (at least at this moment).

– People (programmers) need to tell them what to do.

Computer programming

• How may a programmer tell a computer what to do?

– Programmers use “programming languages” to write codes line by line and

construct “computer programs”.

• Running a program means executing the instructions line by line

and (hopefully) achieve the programmer’s goal.

Ling-Chieh Kung NTU IM

Programming design - Introduction 4 / 47

and (hopefully) achieve the programmer’s goal.

– int a = 0, b = 5;

int c = a + b;

cout << c; // c must be 5

Programming languages

• People and computers talk in programming languages.

• A programming languages may be one of the following:

High-level

Programming language

Ling-Chieh Kung NTU IM

Programming design - Introduction 5 / 47

Machine

language

Assembly

language

High-level

language

Machine languages

• A machine language contains only binary values like 01011011….

• Machines can follow instructions written in machine languages.

– For example, under the MIPS architecture, each instruction is 32-bit long.

– “00000000001000100011000000100000” means “adding the registers 1 and

2 and placing the result in register 4.”

Ling-Chieh Kung NTU IM

Programming design - Introduction 6 / 47

2 and placing the result in register 4.”

• Machine languages are machine-dependent: A program written in

one machine language can only run on one type of machine (CPU).

• Machines can only read machine languages.

• Though people can program in machine language directly (with a

very huge dictionary), it is too inefficient.

Assembly languages

• Instead of writing numbers directly, we may label operations,

registers, memory addresses, and anything else by readable items.

– Label 000000 as ADD, 000010 as JUMP, etc.

• Then we can write programs by these items:

– ADD ax, bx

Ling-Chieh Kung NTU IM

Programming design - Introduction 7 / 47

– ADD ax, bx

MOV cx, ax // then register cx contains ax + bx

• The collection of these readable items and the associated grammar

forms an assembly language.

– The first programming language is an assembly language.

Machine and assembly languages

• To program in assembly languages, we rely on an “assembler”.

– An assembler translates an assembly-language instruction into the

corresponding machine-language binary codes.

– The mapping is “one-to-one”.

• In developing large-scale software, programming in assembly

Ling-Chieh Kung NTU IM

Programming design - Introduction 8 / 47

• In developing large-scale software, programming in assembly

languages is still not efficient enough.

• Moreover, machine and assembly languages are not portable.

– Different types of machines need different machine/assembly languages.

High-level languages

• Most application software are developed in high-level languages.

– A high-level language looks more like human languages.

– More tools helping programmer increase efficiency are added.

• There are many many many high-level languages:

– Some others: Basic, Quick Basic, Visual Basic, Fortran, COBOL, Pascal,

Ling-Chieh Kung NTU IM

Programming design - Introduction 9 / 47

– Some others: Basic, Quick Basic, Visual Basic, Fortran, COBOL, Pascal,

Delphi, C, Perl, Python, Java, C#, PHP, Matlab, etc.

– The language we study in this course, C++, is also a high-level language.

Interpreters and compilers

• Programmers rely on “interpreters” and “compilers” to translate

instructions written in high-level languages to machine-language

binary codes.

– C++ is a compiled language.

– Basic and Perl, for example, are interpreted languages.

Ling-Chieh Kung NTU IM

Programming design - Introduction 10 / 47

– Basic and Perl, for example, are interpreted languages.

• An interpreter translates instructions one by one. Once an

instruction is translated, it is executed immediately.

• A compiler first reads the whole program and then translate all

instructions at once. All translated instructions are executed after

the translation.

• In this course, we focus on compilers.

Portability of high-level languages

• Most high-level languages

allow portability.

• For example, a C++ program

following the standard can run

on computers with different

A C++

program

Compiler 1 Compiler 2

Ling-Chieh Kung NTU IM

Programming design - Introduction 11 / 47

on computers with different

types of CPU.

– As long as we have the right

compilers for both computers.
Machine

language 1

Machine

language 2

CPU 1 CPU 2

High-level and assembly languages

• Which one should a programmer adopt?

High-level languages Assembly languages

Easier to program Harder to program

Portable (typically) Not portable

Hard (if not impossible) to Can control hardware

Ling-Chieh Kung NTU IM

Programming design - Introduction 12 / 47

– Remark: Unix is written in C and MS Windows is written in C++.

– Some application developers mix assembly codes in their program to

enhance efficiency.

Hard (if not impossible) to

control hardware directly

Can control hardware

directly

Suitable for application

software, web services,

operating systems, etc.

Suitable for drivers, video

cards, embedded systems,

etc.

High-level and assembly languages

• C/C++ is sometimes called a “mid-level” language.

– It allows a C++ programmer to “access” the memory.

– We will see this when we study pointers.

• With such low-level functionality, C/C++ is very powerful.

– And dangerous…

Ling-Chieh Kung NTU IM

Programming design - Introduction 13 / 47

– And dangerous…

• In this course, we will study only C++ as a high-level language.

– In the next semester, you may get some training in assembly languages in

Computer Organization and Structure in the IM department.

– You are encouraged to take Computer Organization and Assembly

Languages, Computer Architecture, Systems Programming, and Compiler

Design in the CSIE department to learn more about low-level languages and

computer system architecture.

Outline

• Computer programs

• The C++ programming language

• The basic structure of C++ programs

• Formatting a C++ program

Ling-Chieh Kung NTU IM

Programming design - Introduction 14 / 47

The C++ programming language

• C++ is developed by Bjarne Stroustrup starting in 1979 at AT&T

Bell Labs.

• C++ originates from another programming language C.

– C is a procedural programming language.

– C++ is an object-oriented programming (OOP) language.

Ling-Chieh Kung NTU IM

Programming design - Introduction 15 / 47

– C++ is an object-oriented programming (OOP) language.

• Roughly speaking, C++ is created by adding the functionalities of

classes and objects (and many more) into C.

• C++ is (almost) a superset of C.

– Most C programs can be complied by a C++ compiler.

Perspectives of designing programs

• High-level programming languages can be categorized according

to the perspectives of designing the program.

– In this course, we talk about procedural and object-oriented languages.

– There are many more that will be introduced in Programming Languages in

the IM department.

Ling-Chieh Kung NTU IM

Programming design - Introduction 16 / 47

High-level

languages

Procedural

programming

Object-oriented

programming
Others

Procedural languages

• The main idea of procedural

programming is to construct

a program by combining

pieces of modules.

– These modules are generally

(Start)

The main

Procedure 1

Procedure 2

Ling-Chieh Kung NTU IM

Programming design - Introduction 17 / 47

– These modules are generally

called procedures.

– In C/C++, procedures are

called functions.

The main

program

(End)

Procedure 3

Procedure 4

Object-oriented languages

• Some large-scale software have many “items” that are similar.

– For example, in your MS Windows, there are so many “windows”.

– They may be of different sizes and functions, but the attributes (height,

width, caption, etc.) and operations (resizing, maximizing, closing, etc.)

they need are all the same.

Ling-Chieh Kung NTU IM

Programming design - Introduction 18 / 47

• Instead of designing software based on defining tasks (i.e.,

procedures), people may design based on defining these items.

– In C/C++, these items are called objects.

– The development of GUI (graphical user interface) is one of the main

motivations of OOP (object-oriented programming).

– Does it make sense now that Unix is written in C and MS Windows is

written in C++?

Object-oriented languages

• C++ is an object-oriented language.

– As it originates in C, a procedural language, it is easier to start with the

procedural part.

– Afterwards, we will study the object-oriented part.

• Some people say that C++ is not a pure object-oriented language.

Ling-Chieh Kung NTU IM

Programming design - Introduction 19 / 47

• Some people say that C++ is not a pure object-oriented language.

– One may write a correct C++ program without using objects.

– For some other OO languages, such as Java and C#, this is impossible.

These languages are sometimes called pure OO languages.

Why C++?

• C++ is harder than C:

– In C we do not need to study objects, classes, inheritance, polymorphism,

operator overloading, etc.

• C++ is harder than Java:

– In Java we do not need to study pointers and many pointer-related topics.

Ling-Chieh Kung NTU IM

Programming design - Introduction 20 / 47

– In Java we do not need to study pointers and many pointer-related topics.

• But that means C++ is powerful!

C++

C

JavaApplication-level

System-level

C++ is hard!

• Not all of you will program in C++ after you graduate.

• But once you really know C++, it is easy to learn any other

procedural or OO languages.

• How to “really” know C++?

– Being diligent is this course is necessary but not sufficient!

Ling-Chieh Kung NTU IM

Programming design - Introduction 21 / 47

– Being diligent is this course is necessary but not sufficient!

– Take Data Structures in IM.

– Take OOP in CSIE or ESOE.

– Take Computer Organization and Assembly Languages in CSIE (if you are

still interested in it after taking Computer Organization and Structure in IM).

– Study design patterns.

– And many many more!

Outline

• Computer programs

• The C++ programming language

• The basic structure of C++ programs

• Formatting a C++ program

Ling-Chieh Kung NTU IM

Programming design - Introduction 22 / 47

Our first C++ program

• In most computer programming courses, we start with the “Hello

World” example.

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 23 / 47

• Let’s try to compile this source code and run it!

int main()

{

cout << "Hello World! \n";

return 0;

}

Our first C++ program

• The program can be

decomposed into four parts.

– The preprocessor.

– The namespace.

– The main function block.

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 24 / 47

– The main function block.

– The cout instruction.
int main()

{

cout << "Hello World! \n";

return 0;

}

The preprocessor

• Preprocessor commands,

which begins with #, performs

some actions before the

compiler does the translation.

• The include command here

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 25 / 47

• The include command here

is to include a header file:

– Files containing definitions of

common variables and functions.

– Written to be included by other

programs.

int main()

{

cout << "Hello World! \n";

return 0;

}

The preprocessor

• #include <iostream>

– iostream is part of the C++

standard library. It provides

functionalities of data input and

output.

– Before the compilation, the

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 26 / 47

– Before the compilation, the
compiler looks for the iostream

header file and copy the codes

therein to replace this line.

– The same thing happens when

we include other header files.

int main()

{

cout << "Hello World! \n";

return 0;

}

Including header files

• In this program, we include the iostream file for the cout object.

• With < and >, the compiler searches for iostream in the C++

standard library.

• We may write our own functions into self-defined header files and

include them by ourselves:

Ling-Chieh Kung NTU IM

Programming design - Introduction 27 / 47

include them by ourselves:

– #include "C:\myHeader.h";

– Use quotation marks instead of angle brackets.

– A path must be specified.

• We will not use self-defined header files until the second half of

this semester.

Namespaces

• What is a namespace?

• Suppose all roads in Taiwan

have different names. In this

case, we do not need to include

the city/county name in our

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 28 / 47

the city/county name in our

address.

– This is why we do not need to

specify the district for an address

in Taipei.

int main()

{

cout << "Hello World! \n";

return 0;

}

Namespaces

• However, there are so many

roads sharing the same name.

– So on top of road names, we need

“another level of names”.

• A C++ namespace is a

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 29 / 47

• A C++ namespace is a

collection of names.

– For C++ variables, functions,

objects, etc.

– The object cout and all other

items defined in the C++ standard

library are defined in the
namespace std..

int main()

{

cout << "Hello World! \n";

return 0;

}

The scope resolution operator (::)

• By writing using namespace std;, whenever the compiler

sees a name, it searches whether it is defined in this program or

the namespace std.

• Instead, we may specify the namespace of cout each time when

we use it with the scope resolution operation ::.

Ling-Chieh Kung NTU IM

Programming design - Introduction 30 / 47

we use it with the scope resolution operation ::.

#include <iostream>

int main()

{

std::cout << "Hello World! \n";

return 0;

}

Namespaces

• Most programmers do not need to define their own namespaces.

– Unless you really want to name your own variable/object as cout.

• Typically a using namespace std; instruction suffices.

• We will revisit namespaces and the scope resolution operator later

in this semester.

Ling-Chieh Kung NTU IM

Programming design - Introduction 31 / 47

in this semester.

The main function

• A C++ Program always runs

from the first line of the main

function to the last line.

– The main function is always
named main().

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 32 / 47

– One program, one main function.

• A pair of braces (curly brackets)

defines a block.

– Here within { and } instructions

of the main function is specified.

int main()

{

cout << "Hello World! \n";

return 0;

}

The main function

• int main():

– The function header line.

– int (stands for integer) specifies

that the function should return an

integer as the returned value.

– main: the function name.

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 33 / 47

– main: the function name.

– argument for a function is
included within (and).

• return 0:

– Return the integer 0 as the

returned value.

– Tell the operating system that
everything is fine.

int main()

{

cout << "Hello World! \n";

return 0;

}

Statements

• There are always some

statements in the main function.

– At least there is return 0.

• The computer executes the first

statement, then the second, then

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 34 / 47

statement, then the second, then

the third….

• There are two statements in this

main function.

• Each C++ statement is ended

with a semicolon.

int main()

{

cout << "Hello World! \n";

return 0;

}

cout and <<

• cout is a pre-defined object for “console output”.

– It sends whatever data passed to it to the standard display device.

– Typically the computer screen in the console mode.

• The insertion symbol <<marks the direction of data flow.

cout << "Hello World! \n";

Ling-Chieh Kung NTU IM

Programming design - Introduction 35 / 47

• The insertion symbol <<marks the direction of data flow.

– Data flow like streams.

• "Hello world! \n" is a string.

– Characters contained in a pair of double quotation marks form a string.

• cout << "Hello world! \n":

– Let the string “Hello world! \n” flow to the screen. The character H first,

then e, then l….

The escape sequence \n

• But wait… where is that \n?

• In C++, the slash symbol \ marks the beginning of an escape

sequence.

– An escape sequence is some kind of special “characters”.

cout << "Hello World! \n";

Ling-Chieh Kung NTU IM

Programming design - Introduction 36 / 47

– An escape sequence is some kind of special “characters”.

– \n in C++ means “change to a new line”.

– To see this, try the following codes:

cout << "Hello World! \n";

cout << "I love C++\n so much!";

Escape sequences

• Some common escape sequences are listed below:

Escape

sequence

Effect Escape

sequence

Display

\n A new line \\ A slash: \

\t A horizontal tab \' A single quotation: '

Ling-Chieh Kung NTU IM

Programming design - Introduction 37 / 47

\t A horizontal tab \' A single quotation: '

\b A backspace \" A double quotation: "

\a A sound of alert

Concatenated data streams

• The insertion operator << can be used to concatenate multiple data
streams in one single statement.

– The two statements

and the one statement

cout << "Hello World! \n";

cout << "I love C++\n so much!";

Ling-Chieh Kung NTU IM

Programming design - Introduction 38 / 47

and the one statement

display the same thing.

• Remark: the following statement

is wrong!

cout << "Hello World! \n" << "I love C++\n so much!";

"Hello World!" >> cout;

Our first C++ programs as a whole

• Now we fully understand our first C++ program.

#include <iostream>

using namespace std;

int main()

{

Ling-Chieh Kung NTU IM

Programming design - Introduction 39 / 47

• Remark: Some words are colored because they are C++ reserved
words (keywords), which serve for special purposes. We will talk
about them soon.

{

cout << "Hello World! \n";

return 0;

}

Outline

• Computer programs

• The C++ programming language

• The basic structure of C++ programs

• Formatting a C++ program

Ling-Chieh Kung NTU IM

Programming design - Introduction 40 / 47

Formatting a C++ program

• Recall that in C++ semicolons are marks of the end of statements.

• White spaces, tabs, and new lines do not affect the compilation and
execution of a C++ program.

– Except strings and preprocessor commands.

• The following two programs are equivalent:

Ling-Chieh Kung NTU IM

Programming design - Introduction 41 / 47

• The following two programs are equivalent:

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0;

}

#include <iostream>

using namespace

std; int main

(){cout << "Hello

World! \n“;return 0;}

Formatting a C++ program

• Maintaining the program in a good format is very helpful.

• While each programmer may have her own programming style,
there are some general guidelines.

– Let the editor color the codes.

– Move to a new line for each semicolon.

– Align paired braces vertically.

Ling-Chieh Kung NTU IM

Programming design - Introduction 42 / 47

– Align paired braces vertically.

– Indent blocks according to the levels.

– Write comments.

Comments

• Comments are programmers’ note for the program.

• They will be ignored by the compiler.

• In C++, there are two ways of writing comments:
– A single line comment: Everything following a \\ in the same line are

treated as comments.

– A block comment: Everything within and (may across multiple lines)

Ling-Chieh Kung NTU IM

Programming design - Introduction 43 / 47

– A block comment: Everything within * and *\ (may across multiple lines)
are treated as comments.

Comments

/* Ling-Chieh Kung's work

for the first lecture */

#include <iostream>

using namespace std;

Ling-Chieh Kung NTU IM

Programming design - Introduction 44 / 47

int main()

{

cout << "Hello World! \n";

return 0; // the program terminates correctly

}

Formatting a C++ program

• Move to a new line for each semicolon.

– Never put two statements in the same line!

• Align paired braces vertically.

– Which one do you prefer?

int main() int main() int main() {

Ling-Chieh Kung NTU IM

Programming design - Introduction 45 / 47

int main()

{

int a = 5;

if(a < 5)

{

cout << "...";

}

return 0;

}

int main()

{

int a = 5;

if(a < 5)

{

cout << "...";

}

return 0;

}

int main() {

int a = 5;

if(a < 5) {

cout << "...";

}

return 0;

}

Indentions

• Indent blocks according to the levels.

– Which one do you prefer?

int main()

{

int a = 5;

if(a < 5)

int main()

{

int a = 5;

if(a < 5)

int main()

{

int a = 5;

if(a < 5)

Ling-Chieh Kung NTU IM

Programming design - Introduction 46 / 47

– Remark: Indentions are typically done with tabs. We use two white spaces
on slides because we need to save spaces.

if(a < 5)

{

cout << "...";

}

return 0;

}

if(a < 5)

{

cout << "...";

}

return 0;

}

if(a < 5)

{

cout << "...";

}

return 0;

}

Coloring

• Most modern C++ editors color the codes.

– My style:

/* Ling-Chieh Kung's work

for the first lecture */

#include <iostream>

Ling-Chieh Kung NTU IM

Programming design - Introduction 47 / 47

– Feel free to create your own coloring style.

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0; // the program terminates correctly

}

