
IM1003: Programming Design

Basic Data Types and Operations

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 1 / 62

Ling-Chieh Kung

Department of Information Management

National Taiwan University

February 25, 2013

Outline

• Basic data types

• Operations, expressions, and statements

• Operators

• Casting

• The cin object

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 2 / 62

• The cin object

Data type

• For our programs to do more things, there must be variables.

– To do things like a = b + c and so on.

– The way for us to access memory.

• In C++, each variable must be have its data type.

– The data type determines the operations that can be done on it.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 3 / 62

– The data type determines the operations that can be done on it.

– The data type tells the computer how to allocate memory spaces.

• Here we introduce basic (or built-in or primitive) data types.

– Those provided as part of the C++ standard.

• We will discuss how to define new data types later in this semester.

Literals and variables

• Before we start, let’s know distinguish literals from variables.

• Literals: items whose contents are fixed.

– For example, 3, 8.5, and “Hello world”.

– Can be numbers, strings, and Boolean values.

• Variables: items whose values may change.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 4 / 62

• Variables: items whose values may change.

– These self-defined elements must be given names.

– Defining a new variable requires the programmer to specify its data type.

• There are ten basic data types, belonging to two categories.

Basic data types

Category Type Bytes Type Bytes

Integers bool 1 long 4

char 1 unsigned int 4

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 5 / 62

• The number of bytes is compiler-dependent. The values shown here are

for Dev-C++ 5.4.

char 1 unsigned int 4

int 4 unsigned short 2

short 2 unsigned long 4

Fractional

numbers
float 4 double 8

Variable declaration

• When we want to use a variable, we must first declare it.

– We need to specify its name and data type.

• The compiler, rather than a programmer, decides how many bytes

are allocated to a type.

• The statement for variable declaration is

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 6 / 62

• The statement for variable declaration is

– For example, int myInteger; declares an integer variable called

myInteger.

type variable name;

Variable declaration

• After declaration, compiler will “allocate” a space in the memory

for the variable.

• A variable name is the name of that memory space.

– We do not need to memorize the memory address (which is a sequence of

numbers).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 7 / 62

numbers).

– We may access the space through the variable name.

Declaration and assignment

• Besides declaring a variable, we may also assign values to a

variable.

– int a; // declare an integer variable

– char b; // declare a character variable

– a = 10; // assign 10 to a

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 8 / 62

– a = 10; // assign 10 to a

– b = 'x'; // assign 'x' to b

• We may even do these together. The assignment is then called

initialization if done with declaration.

– int c = 0.5; // declaration and assignment

type variable name = initial value;

Declaration and assignment

• Following an assignment operation, the compiler will put the value

into the space for the variable.

• Without initialization, the variable may be of any value!

– Declaration only allocate a memory space. It does not know what to do to

that space.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 9 / 62

that space.

– Those are the values left since the last time this space is used.

Multi-variable declaration

• We may declare multiple variable in the same type together.

• For example, the syntax for declaring three variables is

– There is no limit on the number of variables.

type name 1, name 2, name 3;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 10 / 62

– There is no limit on the number of variables.

• We may initialize all of them also in a single statement:

• Personally I do not like this style, especially when we do

initialization at declaration.

type name 1 = value 1, name 2 = value 1;

Rules of choosing a variable name

• Only letters, numbers, and the underline symbol (_) are allowed.

• Cannot starts with a number.

• Cannot contain a white space.

• Cannot be the same with any C++ keywords.

– Usually those words colored by your editor.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 11 / 62

– Usually those words colored by your editor.

– E,g., int, float, double, return, using, and namespace.

– Listed in Table 1.1 of the textbook.

• Case-sensitive.

– In fact, the whole C++ world is case-sensitive.

Good programming style

• Always initialize your variables.

– If no value fits, initialize a variable as 0.

• Use mnemonic (pronounced as “knee-monic”) instead of a

short/meaningless name.

– int yardToInch = 12; is better than int y = 12;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 12 / 62

– int yardToInch = 12; is better than int y = 12;

• Capitalize the first character of each word, but not the first word.

– int yardToInch = 12;

– double avgGrade = 0;

– int maxCapacity = 100;

• This is the so-called “camel case”.

Constants

• Sometimes we want to use a variable to store a particular value.

– In a program doing calculations regarding circles, the value of π may be

used repeatedly.

– We do not want to write many 3.14 throughout the program! Why?

– We may declare pi = 3.14 once and then use pi repeatedly.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 13 / 62

• In this case, this variable is actually a symbolic constant.

– We want to prevent it from being modified.

Constants

• A constant is one kind of variables.

• To declare a constant, use the key word const:

– const int a = 100; // Declaring a constant integer

– All further assignment operations on a constant generate compilation errors.

• You must initialize a constant.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 14 / 62

• You must initialize a constant.

– Otherwise there is no way to assign a value to it.

• You are suggested to use capital characters and underlines to

name constants. This is to distinguish them from usual variables.

– const double PI_CONST = 3.1416;

– const int MAX_LEVEL = 5;

– Some people use lowercase characters and underlines.

int

• intmeans an integer.

• Use 4 bytes to store from –231 to 231.

– Try the example “02_01_intLimit”.

– On p. 39 of the textbook: <limits.h> or <climits>, not <limits>.

• unsigned int (4 bytes): from 0 to 232.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 15 / 62

• unsigned int (4 bytes): from 0 to 232.

• short (2 bytes): from –32768 to 32767.

• long: the same as int in Dev-C++.

– Try the example “02_02_sizeof”.

• The C++ standard requires the following:

– The space for a long variable is no smaller than that for an int one.

– The space for an int variable is no smaller than that for a short one.

int

• As an example, the following codes contains two int variables:

• Rules for writing an integer in C++:

int a = 10;

int b = 20;

cout << a + b; // result: 30

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 16 / 62

• Rules for writing an integer in C++:

– Can contain only numbers, +, and -.

– Can be 0, -10, +36, 253, etc.

– Cannot be $255, 6.9, 2,532, etc.

• Be aware of overflow.

• short and long just create integers with different “lengths”.

– In most information systems this is not an issue.

char

• Means a character.

– Use one byte (0 to 255) to store English characters, numbers, and symbols.

– Cannot store, e.g, Chinese characters.

• It is also an “integer”!

– These characters are encoded with the ASCII code in most PCs.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 17 / 62

– These characters are encoded with the ASCII code in most PCs.

– ASCII = American Standard Code for Information Interchange.

– See the ASCII code mapping in your textbook.

– Some encoding:

– Try the example “02_03_char”.

Character A B Z a b z 0 1 9

Code 65 66 90 97 98 122 48 49 57

Literals in char type

• Use single quotation marks to mark your char literal.

– char c = 'c';

– char c = 99; // 99 is c’s ASCII code

• Some wrong ways of marking a character:

– Wrong: char c = "c";

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 18 / 62

– Wrong: char c = "c";

– Wrong: char c = 'cc';

float and double

• float and double are used to declare fractional numbers.

– Can be +10.625, 5.0, -6.2, etc.

– Can be 1.625e2, 16.25e2, 7.33e-3, 3571.62e20, etc.

– Cannot be $75.2, 2,345.0, 3.45.89, etc.

• They follow the IEEE floating point standards.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 19 / 62

• They follow the IEEE floating point standards.

– float uses 4 bytes to record values between 1.4 * 10–45 and 3.4 * 1038.

– double uses 8 bytes to record values between 4.9 * 10–324 and 1.8 * 10308.

Literal of float type

• When we write a usual fractional literal in C++, such as 3.46, it is

set to be a double literal (occupying 8 bytes).

• We may append F to make it a float literal.

– float f1 = 0.5678F;

• double (8 bytes) is more precise than float (4 bytes).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 20 / 62

• double (8 bytes) is more precise than float (4 bytes).

• Dev-C++ (and some other compilers) offers long double as a 16

bytes floating point data type.

double d1 = 0.5678;

double d2 = -6.789E64;

float f1 = 0.5678F;

float f2 = -6.789E64F; // error

bool

• A bool variable uses 1 byte to record true or false.

– All non-zero values are treated as true. Try the example “02_04_bool”.

– 7 bits are wasted.

• Will be particularly important starting from the next week.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 21 / 62

Outline

• Basic data types

• Operations, expressions, and statements

• Operators

• Casting

• The cin object

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 22 / 62

• The cin object

Operations

• In C++, we may use operations to create more interesting things.

– An operation combines operators and operands to generate a result.

– It does one thing and then return a value.

• cout << "Hello." is an operation.

– It print out "Hello." on the screen.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 23 / 62

– It print out "Hello." on the screen.

– The operator is << and the operands are cout and "Hello.".

• cout << "Hello." << “\n”;contains two operations.

– The second << first concatenates “Hello.” and “\n”.

– The first << then sends the string into cout.

• All the above operations return void, which means “nothing”.

The assignment operation

• Another type of operations is the assignment operations.

– An assignment operation does the assignment.

– It then returns the value it assigns.

• a = 10: One operation which returns 10.

• b = a = 10: Two operations.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 24 / 62

• b = a = 10: Two operations.

– b = a = 10: The first operation is a = 10. This operation assigns 10 to a,

and then return 10.

– b = 10: Thus b is assigned 10, too.

• In fact we can do cout << a = 10;.

– However, never do this. All assignment should be made as clear as possible.

Arithmetic operations and expressions

• There are also arithmetic operations:

– Just like simple calculations.

– It combines several arithmetic operators and operands.

– It calculates the result and then returns the result.

• Some examples:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 25 / 62

• Some examples:

– 3 * 5: returns 15.

– 9 + 6: returns 15.

– 9 + 3 * 5: returns 24. How many operations do we have here?

• An expression is a sequence of related arithmetic operations.

– 9 + 6 is an expression. 9 + 3 * 5 is also an expression.

Statements

• One statement contains one or many operations.

• It will execute those operations, and then throw the value away.

• A statement ends with a semicolon (;) .

• Some examples:

– cout << 6;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 26 / 62

– cout << 6;

– cout << 6 + 9;

– cout << a + b * 5;

– b = c * d + f;

• All the returned values are dropped.

Statements

• c = a + b;

is the same as (but certainly better than)

c

=

a

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 27 / 62

a

+ b;

• Only the semicolon matters.

Good programming style

• c = a + b; is the same as (but certainly better than)

c

=

a

+ b;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 28 / 62

+ b;

– Only the semicolon matters.

• It is recommended to use spaces in your statements:

c = a + b;

is the same as (but better than)

c=a+b;.

Outline

• Basic data types

• Operations, expressions, and statements

• Operators

• Casting

• The cin object

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 29 / 62

• The cin object

Operations

• Let’s introduce some most common operators.

• Recall that “operation = operand + operator”.

– The operators do something on or manipulate the operands.

• 3 = 2 + 1:

– Operand: 3, 2, 1.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 30 / 62

– Operand: 3, 2, 1.

– Operator: =, +.

– Note: The above expression is not valid in C++. It is just used to illustrate

the idea of operators and operands.

Associativity of operators

• For each operator, we specify the following:

– The number of operands it operates on.

– The types of operands it operates on.

– The associativity: Where should it stand among those operands and the

order it takes to operate on the operands.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 31 / 62

• It is important to define and follow these rules carefully (though

most of them are very intuitive).

– These rules are part of the grammar of programming languages.

– Because computers cannot read human language.

The assignment operator

• The assignment operator = assigns a value to a variable.

– We call it “assign” or “becomes”.

• It has nothing to do with the “equals” in mathematics.

– “equals” will be introduced in the next week.

variable = expression

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 32 / 62

– “equals” will be introduced in the next week.

• For a = b + c:

– We assign b plus c to a.

– a becomes b plus c.

• Thus we know what does a = a + 1mean.

– It just means that “a becomes a plus one.”

• An assignment operator returns the assigned value.

The assignment operator

• The assignment operator is a binary operator.

– It is associated with two operands.

• It accepts all basic data types.

– Conversion between different data types may occur.

– This is called “casting” and will be discussed at the end of this lecture.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 33 / 62

– This is called “casting” and will be discussed at the end of this lecture.

• Its associativity is from right to left.

– It only assigns the value at its right to the variable at its left.

Some unary operators

• Unary operators operates on one operand.

• The following unary operators are for non-Boolean types:

– +: positive: +3, +5.678 (default; do not need to use it).

– -: negative: -5, -5.678.

• The following is for the Boolean type:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 34 / 62

• The following is for the Boolean type:

– !: not: !true is the same as false.

• The must be put at the left of the operand.

• Each of these unary operator returns the resulting value.

Arithmetic operators

• We have all the basic arithmetic operators:

– +: addition.

– -: subtraction.

– *: multiplication.

– /: division.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 35 / 62

– /: division.

– %: remainder (it is called the modulus operator).

• The modulus operator finds the remainder of a division.

– 10 % 3 results in 1, 20 % 3 results in 2, etc.

• They are all binary and associate operands from left to right.

– 3 + 8 - 9 => 11 - 9 => 2.

• Each of these arithmetic operator returns the resulting value.

Arithmetic operators

• The modulus operator requires both variables to be integers.

• The other four operators can take all basic data types.

double d1 = 10, d2 = 3;

cout << d1 % d2; // compilation error

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 36 / 62

• The other four operators can take all basic data types.

– 3 * 8 and 3.2 * 8.4 are all acceptable.

– This is because these operators have been overloaded (for different types).

– We will discuss operator overloading at the end of this semester.

Arithmetic operators

• We need to be particularly careful when doing a division.

• If we use integers to be both the dividend and divisor, things may

go wrong:

int d1 = 10;

int d2 = 3;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 37 / 62

– Try the example “02_05_intDivision”.

• The result is due to the fact that the operator is defined to return

an integer if both the operands are integers.

• Solution: storing in a floating point variable or casting.

int d2 = 3;

cout << d1 / d2;

Example

• Given an integer as a radius, let’s calculate the area of that circle.

#include <iostream>

using namespace std;

int main()

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 38 / 62

int main()

{

int radius = 10;

double area = radius * radius * 3.1416;

cout << area << "\n";

return 0;

}

Increment/decrement operators

• For many cases, we need to do increment/decrement operations:

• In C++, two operators are designed specifically for these tasks.

int i = 10;

i = i + 1; // i becomes 11

i = i - 1; // i becomes 10

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 39 / 62

• In C++, two operators are designed specifically for these tasks.

– ++: increment operator: i++ is the same as i = i + 1.

– --: decrement operator: i–– is the same as i = i – 1.

int i = 10;

i++; // i becomes 11

i--; // i becomes 10

Increment/decrement operators

• These two operators are both unary.

• Can be applied on all basic data types.

– But we should only apply them on integers.

• Typically using them is faster than using the equivalent

addition/subtraction and assignment operation.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 40 / 62

addition/subtraction and assignment operation.

Increment/decrement operators

• Both can be put at the left or the right of the operand.

– This changes the order of related operations.

– i++: returns the value of i, and then increment i.

– ++i: increments i, and then returns the value of i after the increment.

– i-- and --iwork in the same way.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 41 / 62

– i-- and --iwork in the same way.

a = 5; b = a++; // a = 6, b = 5

a = 5; b = ++a; // a = 6, b = 6

Good programming style

• Do not make your program hard to understand.

• What happens to a = b+++++c?

• How about a = (b++) + (++c)?

• How about

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 42 / 62

c++;

a = b + c;

b++;

Precedence

• All operators are ruled by precedence.

– Level 1: ++i, --i.

– Level 2: +i, -i, !i, i++, i--.

– Level 3: a * b, a / b, a % b.

– Level 4: a + b, a - b.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 43 / 62

– Level 4: a + b, a - b.

– Level 5: =.

• You do not need to remember them, because:

– They are cumbersome.

– Even if you can remember all of them, you can not assume other

programmer can, too.

• Separate your codes and use parentheses to make your code clear.

The precedence operator

• One may specify the precedence by using parentheses: ().

• { } and [] are not used as parentheses operator.

– In C++, they have their own meanings.

• For nested parentheses, use multiple () carefully.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 44 / 62

a = ((b + c) * d - (e + f)) * g

Self-assigning operations

• In many cases, an assignment operation is self-assigning.

– a = a + b, a = a - 20, etc.

• For each of the five arithmetic operators +, -, *, /, and %, there is

a corresponding self-assignment operator.

– a += b means a = a + b.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 45 / 62

– a += b means a = a + b.

– a *= b - 2 means a = a * (b – 2) (not a = a * b – 2).

• In general, var op= expmeans var = var op exp.

– var: variable. op: operator, including: +, -, *, /, %. exp: expression.

• Typically a += b is faster than a = a + b, etc.

Outline

• Basic data types

• Operations, expressions, and statements

• Operators

• Casting

• The cin object

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 46 / 62

• The cin object

Casting

• A big container may store a small item.

• A variable of a “larger” type may store a value of a “smaller” type

without losing data/precision.

double d = 5; // d = 5.0

int s = 5.5; // s = 5

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 47 / 62

• There are two kinds of casting:

– Implicit casting.

– Explicit casting.

int s = 5.5; // s = 5

Casting Rules

• Implicit casting:

– Store a type-1 value to a type-2 variable.

– Type 2 is “no smaller than” than type 1.

• Examples:

– char -> int.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 48 / 62

– char -> int.

– int -> float -> double.

– short -> int -> long.

• Counterexamples:

– double -> int, long -> short.

Casting Rules

• A programmer needs not to ask the compiler to do implicit casting.

– Because it doesn’t cause a loss of precision.

– The same value may be stored in a different way as the type changes.

• If we want to do something that may cause a loss in precision, we

should specifically notify the compiler.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 49 / 62

should specifically notify the compiler.

– This is the case of explicit casting.

– This is to make sure that, at the run time, the program runs as we expect.

– This is to make sure that we know what we are doing.

– We are also notifying other programmers (or the future ourselves).

Explicit casting

• There are four different explicit casting operators.

– static_cast (the staticCast on p. 111 of the textbook is wrong).

– dynamic_cast.

– reindivter_cast.

– const_cast.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 50 / 62

– const_cast.

• For basic data types, just use static_cast.

• For example:

– int a = 5.5; // not good

– int a = static_cast<int>(5.5); // good

• Try the example “02_06_cast”.

static_cast<type>(expression)

Good programming style

• There is an old way of explicit casting:

– For example, int a = (int) 5.2; .

• Do not use it!

type (expression)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 51 / 62

• Do not use it!

– This operation includes all 4 possibilities, and we have no idea which one

will be performed.

• If possible, try to modify your variable declaration to avoid casting.

Casting for division

• Recall that if we do

the result will be 3 rather than 3.33.

int d1 = 10;

int d2 = 3;

cout << d1 / d2;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 52 / 62

the result will be 3 rather than 3.33.

• If allowed, we may change the data types of the operands.

– Try the example “02_05_intDivision”.

• If not allowed, we may cast the operands temporarily.

Casting for division

• Let’s try it:

Does that work?

int d1 = 10;

int d2 = 3;

cout << static_cast<double>(d1 / d2);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 53 / 62

Does that work?

• Let’s try another one:

Does that work?

int d1 = 10;

int d2 = 3;

cout << static_cast<double>(d1) / d2;

Outline

• Basic data types

• Operations, expressions, and statements

• Operators

• Casting

• The cin object

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 54 / 62

• The cin object

The cin object

• We know that the cout object can print out data sent into it to the

standard input (typically the screen).

• Another object, cin, can accept data input by the user from the

standard input (typically the keyboard) into the program.

• In order to use the cin object, we need to first prepare a buffer for

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 55 / 62

• In order to use the cin object, we need to first prepare a buffer for

the input data. The thing we need is a variable.

• When we use a single variable to receive the data, the syntax is

– The data entered by the user should follow the type of the variable.

cin >> variable;

The cin object

• Consider the following example (example “02_07_cin”).

#include <iostream>

using namespace std;

int main()

{

int radius = 0;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 56 / 62

int radius = 0;

cout << "Please enter the radius of a circle: ";

cin >> radius;

double area = radius * radius * 3.1416;

cout << "The area of the circle is " << area << ".\n";

return 0;

}

An example

• An example that really requires explicit casting.

– The example “02_08_minutes”.

#include <iostream> //

using namespace std;

int main()

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 57 / 62

int main()

{

double minutes;

cout << "Enter a number of minutes: ";

cin >> minutes;

int minInteger = static_cast<int>(minutes);

double seconds = (minutes - minInteger) * 60;

cout << "This converts to " << minInteger

<< " minutes and " << seconds << " seconds.\n";

}

The cin object

• In this example, we allow the user to enter the radius.

• We define a variable to receive the input value.

• We then use the cin operation to send the value into the variable.

int radius = 0;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 58 / 62

– The cout statement is a prompt: a message telling the user what to do.

– The input of a value ends when the user press “enter”.

• The variable can then be used in other statements.

cout << "Please enter the radius of a circle: ";

cin >> radius;

double area = radius * radius * 3.1416;

The cin object

• The extraction operator >> is used with the cin object.

• One cannot use coutwith >> or cinwith <<!

• Multiple variables can be assigned values in a cin statement.

a >> cout; // compilation error

b << cin; // compilation error

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 59 / 62

• Multiple variables can be assigned values in a cin statement.

– The user may separate the two input values by an “enter” or a white space.

– Personally I do not recommend this. I will separate the two input actions

unless there is a good reason.

int a = 0;

int b = 0;

cin >> a, b;

Dropped input values

• If in an input stream, there are more input values than the

variables, values with no corresponding variables will be dropped.

• This is particularly an important issue when the user inputs a string.

• As an (not so related) example:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 60 / 62

char c;

cin >> c; // if we enter "123"

cout << c; // only "1" is printed out

int i, j;

cin >> i >> j; // if we enter "1 2 3"

cout << i << j; // the output is "12"

Entering a value with a wrong data type

• The entered value should follow the data type of the variable.

• As an example:

int i, j;

cin >> i >> j; // if we enter "1.2 7"

cout << i << j; // the output is ???

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 61 / 62

– For the cin object, the decimal point separates two integers: 1 and 2.

– As the cin object is expecting two integers, 7 will be dropped.

– The result is unpredictable.

• What if we change i to be a double variable?

cout << i << j; // the output is ???

Input validation

• In general, it is a the programmer’s responsibility to avoid

potential errors in user input.

– Users are not programmers/engineers!

• One thing a programmer can do is to provide clear instructions in

prompts for users.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Basic Data Types and Operations 62 / 62

prompts for users.

• Another more important and useful way is input validation:

– Check the data before it is really used.

– If it is not in the desired type/format, ask the user to re-enter.

– Will be discussed in the next lecture.

• Input masks are widely used in GUI or web programming.

– Not easy for console inputs.

