IM 1003: Computer Programming

 AlgorithmsLing-Chieh Kung

Department of Information Management
National Taiwan University

Algorithms

- There is an old saying:

Programming design $=$ Data structures + Algorithms.

- While Data Structures and Algorithms are two advanced courses, in this semester we will give very brief introductions.
- Today let's talk about algorithms.
- What is an algorithm?

Outline

- Algorithms
- Combinatorial problems
- The knapsack problem

Algorithms

- An algorithm is a sequence of actions (steps), arranged in a specific order, that completes a task.
- All steps must be precise and executable.
- E.g., if the task is to "get 100 in the final exam of Calculus", what is an algorithm for this task?
- "Writing down correct answers on the answer sheet" is not.
- "Reading the textbook thoroughly", "completing all the exercises", "have a good sleep in the previous night", "go to the classroom on time", and "be relax and confident" look more like an algorithm.
- Let's see some more concrete examples.

Algorithms

- How to find the maximum number in an array?
- An algorithm is:
- First set the maximum number to 0 .
- For each element in the array, check whether it is larger than the maximum number.
- If so, replace the maximum number by the current element. Otherwise, do nothing and check the next element.
- Once all elements are checked, report the resulting maximum number.
- Note that all the steps are precise and executable.

Ling-Chieh Kung

Pseudocode vs. implementation

- A pseudocode describes an algorithm.
- It ignores the syntax issue of a specific programming language.
- It can be implemented by different programming languages.
- For example, in C++:

```
```

int array[5] ={1, 2, 3, 4, 8};

```
```

int array[5] ={1, 2, 3, 4, 8};
}

```
```

}

```
```

```
int max = 0;
```

int max = 0;

```
int max = 0;
for(int i = 0; i < 5; i++)
for(int i = 0; i < 5; i++)
for(int i = 0; i < 5; i++)
{
{
{
    if(array[i] > max)
    if(array[i] > max)
    if(array[i] > max)
    max = array[i];
```

 max = array[i];
    ```
    max = array[i];
```

```
<ax =array[i];
```

```
<ax =array[i];
```


Pseudocodes

- An algorithm is usually described by pseudocodes:
- A description in words that is organized in a programming style.
- Use selection, repetition, variables, and indices precisely.
- The pseudocode for the previous algorithm is:

```
Consider an array A with }n\mathrm{ elements
Set max to 0.
For i from 1 to n
    If }\mp@subsup{A}{i}{}>\mathrm{ max
        max = A .
Output max.
```

\qquad

Correctness of algorithms

- For a task, an algorithm may be right or wrong.
- Is the algorithm still correct for arrays with negative numbers?

```
Consider an array A with n elements
Set max to 0.
For }i\mathrm{ from 1 to }n\mathrm{ :
    If }\mp@subsup{A}{i}{}>\mathrm{ max
        max=A
Output max.
```

- If not, how to modify it?
Consider an array A with n elements
Set \max to A_{1}.
For i from 2 to n :
\quad If $A_{i}>\max$
$\quad \max =A_{i}$.
Output \max.

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

Efficiency of algorithms

- For a task, an correct algorithm may be efficient or inefficient.
- Are these two algorithms both correct?
- Which one is more efficient?

| Consider an array A with n elements | Consider an array A with n elements |
| :--- | :--- |
| Set \max to A_{1}. | Set \max to A_{1}. |
| For i from 2 to n : | For i from 2 to n : |
| If $A_{i} \geq \max$ | If $A_{i}>\max$ |
| $\quad \max =A_{i}$. | $\max =A_{i}$. |
| Output \max. | Output \max. |

- Among all correct algorithms, we want to find one that is efficient.

Ling-Chieh Kung

Summary

- An algorithm is a sequence of steps for completing a task.
- An algorithm should first be correct. Then it should be efficient.
- An algorithm is typically described by pseudocodes.
- Ignore the implementation details when you design your program!

Efficiency of algorithms

- The efficiency (sometimes called performance) of different algorithms may vary a lot.
- How to find both the maximum and minimum numbers in an array?
Consider an array A with n elements
Set \max to A_{1}. Set min to A_{1}.
For i from 2 to n :
\quad If $A_{i}>\max$
\quad max $=A_{i}$.
If $A_{i}<\min$
\quad min $=A_{i}$.
Output max and min.

Consider an array A with n elements Set max to A_{1}. Set \min to A_{1}. For i from 2 to n :

If $A_{i}>\max$

$$
\max =A_{i}
$$

Else if $A_{i}<\min$ $\min =A_{i}$.

- Which one is more efficient?
\qquad

| Programming Design , Spring 2013 - Algorithms | $10 / 32$ |
| :--- | ---: |

Outline

- Algorithms
- Combinatorial problems
- The knapsack problem

Combinatorial problems

- Combinatorial problems (or discrete problems) brings many challenges and interesting findings in the field of Computer Science, Operations Research, and various fields of Engineering.
- Roughly speaking, in a combinatorial problem, one tries to find a subset of "items" such that:
- The selection fits a requirement, or
- The selection is optimal with respect to an objective function.
- In the former case, it is a combinatorial decision problem.
- In the latter case, it is a combinatorial optimization problem.

Dominating sets

- The decision version of this problem: "Is there any dominating set that contains no more than k nodes?"
- The optimization version of this problem: "Find the dominating set that contains the smallest number of nodes."

Greedy algorithms

- How would you solve a dominating set problem?
- For a combinatorial problem, typically we may try a greedy algorithm:
- At each step, select one item that "at this moment" seems to be the best.
- For the dominating set problem, a greedy algorithm may be:
- Before all nodes are either in D or adjacent to one node in D, select a node that is not in D and adjacent to most not-in- D nodes.

- Does a greedy algorithm always find an optimal solution?

Complete enumeration

- Another extreme way of solving a combinatorial problem is through a complete enumeration.
- Also called the brute-force algorithm.
- Simply enumerate all the possible selections, compare them, and find the best one.
- Does a complete enumeration always find an optimal solution?
- How many possible selections do we have for this graph?

Ling-Chieh Kung
Programming Design, Spring 2013 - Algorithms

Polynomial-time algorithms

- On the contrary, some algorithms run in a polynomial time.
- The number of actions to be done is at most a polynomial function of the problem size.
- To find the maximum and minimum numbers in a array:
- At most how many actions will be done?

| Consider an array A with n elements | Consider an array A with n elements |
| :--- | :--- |
| Set \max to A_{1}. Set \min to A_{1}. | Set \max to A_{1}. Set \min to A_{1}. |
| For i from 1 to n : | For i from 1 to n : |
| \quad If $A_{i}>\max$ | If $A_{i}>\max$ |
| $\max =A_{i}$. | $\max =A_{i}$. |
| If $A_{i}<\min$ | Else if $A_{i}<\min$ |
| $\quad \min =A_{i}$. | $\min =A_{i}$. |
| Output \max and \min. | Output \max and \min. |

Exponential-time algorithms

- While a greedy algorithm is efficient, it may not be correct.
- While a complete enumeration is correct, it is too inefficient.
- Especially when the problem size is large.
- Regarding the dominating set problem, suppose the given graph has n nodes, a complete enumeration needs to evaluate 2^{n} possible selections.
- Such an algorithm is said to be an exponential-time algorithm.
- Which is not practical for large-scale problems.

Algorithm complexity

- For the same task, using different algorithms may result in completely different execution time!
- Consider the following example:
- For n^{2} squares arranged into a big square, how many different routes, which do not travel the same edge twice, do we have from the left-top corner to the right-bottom corner?

- Let's watch the video!

Algorithm complexity

- The issues of algorithm complexity and efficiency lie at the heart of Computer Science.
- Will be discussed extensively in Discrete Mathematics, Algorithms, and Theory of Computation.
- At this time, all we need to know is that "among all algorithms, some are better and some are worse."

The knapsack problem

- The knapsack problem is one of the most fundamental problems in Computer Science.
- It is a problem that is "easy to describe but hard to solve."
- The problem:
- We are given a knapsack (backpack) and a set of items.
- These items have various weights and values.
- We want to select some items to maximize the total value.
- But the total weight cannot exceed the knapsack capacity.

Outline

- Algorithms
- Combinatorial problems
- The knapsack problem

The knapsack problem

- Problem input:
- The weight of items: $w_{1}, w_{2}, \ldots, w_{n}$.
- The value of items: $v_{1}, v_{2}, \ldots, v_{n}$.
- The weight limit of the knapsack B.
- Problem formulation:
- Let $x_{i}=1$ if item i is selected and 0 otherwise.
- The problem:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} v_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} w_{i} x_{i} \leq B \\
& x_{i} \in\{0,1\} \forall i=1, \ldots, n
\end{array}
$$

A greedy algorithm

- How to solve the knapsack problem?
- Let's consider the following greedy algorithm:
- For each unselected item that can be select (selecting it does not exceed the knapsack capacity), select the one which has the largest v_{i} / w_{i} ratio.
- Keep doing so until we can select no more item.
- Will the optimal solution be found for the following instance?
- Knapsack capacity: $B=6$.
- 4 items:

| i | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| w_{i} | 2 | 3 | 4 | 5 |
| v_{i} | 2 | 2 | 4 | 6 |

- Any idea to modify this algorithm?

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NP-hardness

- So what should we do if we really need a solution?
- Fortunately, the knapsack problem is weakly NP-hard:
- There exists pseudo-polynomial algorithms.
- We will introduce an algorithm based on dynamic programming.
- The algorithm requires selection, repetition, and matrices.
- Given a capacity B and a set of items with weights $w_{1}, w_{2}, \ldots, w_{n}$:
- We want to determine whether there is a set such that items in that set together weigh exactly B.
- If so, we want to determine which items should be selected.

NP-hardness

- Amazingly, no one knows how to solve this problem efficiently!
- It has been shown that the knapsack problem belongs to the class of "NP-hard" problems.
- No one has found a method that is better than complete enumeration.
- Most people believe a polynomial-time algorithm does not exist.
- Even the following simplification is NP-hard:
- Given some items with various weights and a knapsack with a fixed capacity, is there a way of selecting a subset of items to exactly fill the knapsack?
- Note that this is a decision problem.

The dynamic programming algorithm

- Let $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be the weight vector and B be the capacity.
- Let $\boldsymbol{P}(\boldsymbol{B}, n)$ be the problem of capacity B and weights w_{1}, \ldots, w_{n}.
- For the problem with $w=(2,3,4,5)$ and $B=6$:
- $P(6,4)$ is our original problem.
- $P(6,3)$ is to fill a knapsack of capacity 6 with $w=(2,3,4)$.
- $P(5,3)$ is to fill a knapsack of capacity 5 with $w=(2,3,4)$.
- The answer of $P(B, n)$ has three possibilities:
- $P(B, n)=$ IMP if these n items cannot fill the knapsack.
$-P(B, n)=$ NS if they can fill the knapsack by not selecting item n.
- $P(B, n)=\mathrm{S}$ if they can fill the knapsack by selecting item n.

The dynamic programming algorithm

- Example: $w=(2,3,4,5)$ and $B=6$.
- A problem can be solved by solving "smaller" problems:
- Suppose we know $P(6,3)=$ NS or S , then we know $P(6,4)=\mathrm{NS}$.
- Suppose we know $P(1,3)=\mathrm{NS}$ or S , then we know $P(6,4)=\mathrm{S}$.
- Suppose we know $P(6,3)=\mathrm{P}(1,3)=\operatorname{IMP}$, does $P(6,4)=\operatorname{IMP}$?
- And also problems with only 1 item is easy:
- $P(0,1)=\mathrm{NS}, P(2,1)=\mathrm{S}, P(B, 1)=\mathrm{IMP}$ for all B that are not 0 or 2 .
- So we may do an iterative bottom-up solution process:
- First problems with only 1 item.
- Then 2 items.
- And so on.

Ling-Chieh Kung
Programming Design, Spring 2013 - Algorithms

Implementation

- How to implement this algorithm?
- Prepare a two-dimensional array.
- Each element records the answer of that subproblem.
- Find the values of the array by a two-level loop.
- The outer loop checks 1 item, 2 items, \ldots, and n items.
- The inner loop checks capacity $0,1,2, \ldots$, and B.
- For each subproblem:
- If condition 1 is true, write S into this element.
- If condition 2 is true, write NS into this element.
- Otherwise, write IMP.
- What if both conditions are true?

The dynamic programming algorithm

- Solving this problem with a matrix:

| w_{i} / B | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | NS | IMP | S | IMP | IMP | IMP | IMP |
| 3 | NS | IMP | NS | S | IMP | S | IMP |
| 4 | NS | IMP | NS | NS | S | NS | S |
| 5 | NS | IMP | NS | NS | NS | S or NS | NS |

- The last cell is what we want. The answer is "Yes, we may fill a knapsack of capacity 6 with the four items."
- How to determine the items to be selected?

Ling-Chieh Kung
Programming Design, Spring 2013 - Algorithms

Efficiency

- Is this algorithm efficient?
- Typically yes, but no if the knapsack capacity is really large...

