
IM 1003: Computer Programming

Algorithms

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 1 / 32

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Outline

• Algorithms

• Combinatorial problems

• The knapsack problem

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 2 / 32

Algorithms

• There is an old saying:

Programming design = Data structures + Algorithms.

• While Data Structures and Algorithms are two advanced courses,

in this semester we will give very brief introductions.

• Today let’s talk about algorithms.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 3 / 32

• Today let’s talk about algorithms.

• What is an algorithm?

Algorithms

• An algorithm is a sequence of actions (steps), arranged in a

specific order, that completes a task.

– All steps must be precise and executable.

• E.g., if the task is to “get 100 in the final exam of Calculus”, what

is an algorithm for this task?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 4 / 32

is an algorithm for this task?

– “Writing down correct answers on the answer sheet” is not.

– “Reading the textbook thoroughly”, “completing all the exercises”, “have a

good sleep in the previous night”, “go to the classroom on time”, and “be

relax and confident” look more like an algorithm.

• Let’s see some more concrete examples.

Algorithms

• How to find the maximum number in an array?

• An algorithm is:

– First set the maximum number to 0.

– For each element in the array, check whether it is larger than the maximum

number.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 5 / 32

number.

– If so, replace the maximum number by the current element. Otherwise, do

nothing and check the next element.

– Once all elements are checked, report the resulting maximum number.

• Note that all the steps are precise and executable.

Pseudocodes

• An algorithm is usually described by pseudocodes:

– A description in words that is organized in a programming style.

– Use selection, repetition, variables, and indices precisely.

• The pseudocode for the previous algorithm is:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 6 / 32

Consider an array A with n elements

Set max to 0.

For i from 1 to n:

If A
i
> max

max = A
i
.

Output max.

Pseudocode vs. implementation

• A pseudocode describes an algorithm.

– It ignores the syntax issue of a specific programming language.

– It can be implemented by different programming languages.

• For example, in C++:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 7 / 32

int array[5] = {1, 2, 3, 4, 8};

int max = 0;

for(int i = 0; i < 5; i++)

{

if(array[i] > max)

max = array[i];

}

Correctness of algorithms

• For a task, an algorithm may be right or wrong.

– Is the algorithm still correct for arrays with negative numbers?

Consider an array A with n elements

Set max to 0.

For i from 1 to n:

If A > max

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 8 / 32

– If not, how to modify it?

If A
i
> max

max = A
i
.

Output max.

Consider an array A with n elements

Set max to A1.

For i from 2 to n:

If A
i
> max

max = A
i
.

Output max.

Efficiency of algorithms

• For a task, an correct algorithm may be efficient or inefficient.

– Are these two algorithms both correct?

– Which one is more efficient?

Consider an array A with n elements

Set max to A1.

For i from 2 to n:

Consider an array A with n elements

Set max to A1.

For i from 2 to n:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 9 / 32

• Among all correct algorithms, we want to find one that is efficient.

For i from 2 to n:

If A
i
≥ max

max = A
i
.

Output max.

1

For i from 2 to n:

If A
i
> max

max = A
i
.

Output max.

Efficiency of algorithms

• The efficiency (sometimes called performance) of different

algorithms may vary a lot.

• How to find both the maximum and minimum numbers in an array?

Consider an array A with n elements Consider an array A with n elements

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 10 / 32

– Which one is more efficient?

Set max to A1. Set min to A1.

For i from 2 to n:

If A
i
> max

max = A
i
.

If A
i
< min

min = A
i
.

Output max and min.

Set max to A1. Set min to A1.

For i from 2 to n:

If A
i
> max

max = A
i
.

Else if A
i
< min

min = A
i
.

Output max and min.

Summary

• An algorithm is a sequence of steps for completing a task.

• An algorithm should first be correct. Then it should be efficient.

• An algorithm is typically described by pseudocodes.

– Ignore the implementation details when you design your program!

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 11 / 32

Outline

• Algorithms

• Combinatorial problems

• The knapsack problem

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 12 / 32

Combinatorial problems

• Combinatorial problems (or discrete problems) brings many

challenges and interesting findings in the field of Computer

Science, Operations Research, and various fields of Engineering.

• Roughly speaking, in a combinatorial problem, one tries to find a

subset of “items” such that:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 13 / 32

subset of “items” such that:

– The selection fits a requirement, or

– The selection is optimal with respect to an objective function.

• In the former case, it is a combinatorial decision problem.

• In the latter case, it is a combinatorial optimization problem.

Dominating sets

• Consider the following example

“dominating set”:

– We are given a graph, which contains a

set of nodes and set of links.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 14 / 32

– A dominating set is a set of nodes D

such that all nodes not in D is adjacent

to at least one node in D.

– For a graph, there may be more than one

dominating sets.

Dominating sets

• The decision version of this problem:

“Is there any dominating set that

contains no more than k nodes?”

• The optimization version of this

problem: “Find the dominating set

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 15 / 32

problem: “Find the dominating set

that contains the smallest number of

nodes.”

Greedy algorithms

• How would you solve a dominating set problem?

• For a combinatorial problem, typically we may try a greedy

algorithm:

– At each step, select one item that “at this moment” seems to be the best.

• For the dominating set problem,

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 16 / 32

• For the dominating set problem,

a greedy algorithm may be:

– Before all nodes are either in D or

adjacent to one node in D, select a

node that is not in D and adjacent

to most not-in-D nodes.

• Does a greedy algorithm always

find an optimal solution?

1

2

3

Complete enumeration

• Another extreme way of solving a combinatorial problem is

through a complete enumeration.

– Also called the brute-force algorithm.

– Simply enumerate all the possible selections, compare them, and find the

best one.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 17 / 32

• Does a complete enumeration always find an optimal solution?

• How many possible selections do we have for this graph?

Exponential-time algorithms

• While a greedy algorithm is efficient, it may not be correct.

• While a complete enumeration is correct, it is too inefficient.

– Especially when the problem size is large.

• Regarding the dominating set problem, suppose the given graph

has n nodes, a complete enumeration needs to evaluate 2n possible

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 18 / 32

has n nodes, a complete enumeration needs to evaluate 2n possible

selections.

• Such an algorithm is said to be an exponential-time algorithm.

– Which is not practical for large-scale problems.

Polynomial-time algorithms

• On the contrary, some algorithms run in a polynomial time.

– The number of actions to be done is at most a polynomial function of the

problem size.

• To find the maximum and minimum numbers in a array:

– At most how many actions will be done?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 19 / 32

– At most how many actions will be done?

Consider an array A with n elements

Set max to A1. Set min to A1.

For i from 1 to n:

If A
i
> max

max = A
i
.

Else if A
i
< min

min = A
i
.

Output max and min.

Consider an array A with n elements

Set max to A1. Set min to A1.

For i from 1 to n:

If A
i
> max

max = A
i
.

If A
i
< min

min = A
i
.

Output max and min.

Algorithm complexity

• For the same task, using different algorithms may result in

completely different execution time!

• Consider the following example:

– For n2 squares arranged into a big square, how many different routes, which

do not travel the same edge twice, do we have from the left-top corner to the

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 20 / 32

do not travel the same edge twice, do we have from the left-top corner to the

right-bottom corner?

• Let’s watch the video!

Algorithm complexity

• The issues of algorithm complexity and efficiency lie at the heart

of Computer Science.

– Will be discussed extensively in Discrete Mathematics, Algorithms, and

Theory of Computation.

• At this time, all we need to know is that “among all algorithms,

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 21 / 32

• At this time, all we need to know is that “among all algorithms,

some are better and some are worse.”

Outline

• Algorithms

• Combinatorial problems

• The knapsack problem

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 22 / 32

The knapsack problem

• The knapsack problem is one of the most fundamental problems

in Computer Science.

• It is a problem that is “easy to describe but hard to solve.”

• The problem:

– We are given a knapsack (backpack) and a set of items.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 23 / 32

– We are given a knapsack (backpack) and a set of items.

– These items have various weights and values.

– We want to select some items to maximize the total value.

– But the total weight cannot exceed the knapsack capacity.

The knapsack problem

• Problem input:

– The weight of items: w1, w2, …, w
n
.

– The value of items: v1, v2, …, v
n
.

– The weight limit of the knapsack B.

• Problem formulation:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 24 / 32

• Problem formulation:

– Let x
i
= 1 if item i is selected and 0 otherwise.

– The problem:

.,...,1}1,0{

s.t.

max

1

1

nix

Bxw

xv

i

n

i

ii

n

i

ii

=∀∈

≤∑

∑

=

=

A greedy algorithm

• How to solve the knapsack problem?

• Let’s consider the following greedy algorithm:

– For each unselected item that can be select (selecting it does not exceed the

knapsack capacity), select the one which has the largest v
i
/ w

i
ratio.

– Keep doing so until we can select no more item.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 25 / 32

– Keep doing so until we can select no more item.

• Will the optimal solution be found for the following instance?

– Knapsack capacity: B = 6.

– 4 items:

• Any idea to modify this algorithm?

i 1 2 3 4

w
i

2 3 4 5

v
i

2 2 4 6

NP-hardness

• Amazingly, no one knows how to solve this problem efficiently!

• It has been shown that the knapsack problem belongs to the class

of “NP-hard” problems.

– No one has found a method that is better than complete enumeration.

– Most people believe a polynomial-time algorithm does not exist.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 26 / 32

– Most people believe a polynomial-time algorithm does not exist.

• Even the following simplification is NP-hard:

– Given some items with various weights and a knapsack with a fixed

capacity, is there a way of selecting a subset of items to exactly fill the

knapsack?

– Note that this is a decision problem.

NP-hardness

• So what should we do if we really need a solution?

• Fortunately, the knapsack problem is weakly NP-hard:

– There exists pseudo-polynomial algorithms.

– We will introduce an algorithm based on dynamic programming.

– The algorithm requires selection, repetition, and matrices.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 27 / 32

– The algorithm requires selection, repetition, and matrices.

• Given a capacity B and a set of items with weights w1, w2, …, w
n
:

– We want to determine whether there is a set such that items in that set

together weigh exactly B.

– If so, we want to determine which items should be selected.

The dynamic programming algorithm

• Let w = (w1, w2, …, w
n
) be the weight vector and B be the capacity.

• Let P(B, n) be the problem of capacity B and weights w1, …, w
n
.

• For the problem with w = (2, 3, 4, 5) and B = 6:

– P(6, 4) is our original problem.

– P(6, 3) is to fill a knapsack of capacity 6 with w = (2, 3, 4).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 28 / 32

– P(6, 3) is to fill a knapsack of capacity 6 with w = (2, 3, 4).

– P(5, 3) is to fill a knapsack of capacity 5 with w = (2, 3, 4).

• The answer of P(B, n) has three possibilities:

– P(B, n) = IMP if these n items cannot fill the knapsack.

– P(B, n) = NS if they can fill the knapsack by not selecting item n.

– P(B, n) = S if they can fill the knapsack by selecting item n.

The dynamic programming algorithm

• Example: w = (2, 3, 4, 5) and B = 6.

• A problem can be solved by solving “smaller” problems:

– Suppose we know P(6, 3) = NS or S, then we know P(6, 4) = NS.

– Suppose we know P(1, 3) = NS or S, then we know P(6, 4) = S.

– Suppose we know P(6, 3) = P(1, 3) = IMP, does P(6, 4) = IMP?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 29 / 32

– Suppose we know P(6, 3) = P(1, 3) = IMP, does P(6, 4) = IMP?

• And also problems with only 1 item is easy:

– P(0, 1) = NS, P(2, 1) = S, P(B, 1) = IMP for all B that are not 0 or 2.

• So we may do an iterative bottom-up solution process:

– First problems with only 1 item.

– Then 2 items.

– And so on.

• Solving this problem with a matrix:

The dynamic programming algorithm

w
i

/ B 0 1 2 3 4 5 6

2

3 NS IMP NS S IMP S IMP

NS IMP S IMP IMP IMP IMP

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 30 / 32

• The last cell is what we want. The answer is “Yes, we may fill a

knapsack of capacity 6 with the four items.”

• How to determine the items to be selected?

4

5

NS IMP NS NS S NS S

NS IMP NS NS NS S or NS NS

Implementation

• How to implement this algorithm?

• Prepare a two-dimensional array.

– Each element records the answer of that subproblem.

• Find the values of the array by a two-level loop.

– The outer loop checks 1 item, 2 items, …, and n items.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 31 / 32

– The outer loop checks 1 item, 2 items, …, and n items.

– The inner loop checks capacity 0, 1, 2, …, and B.

• For each subproblem:

– If condition 1 is true, write S into this element.

– If condition 2 is true, write NS into this element.

– Otherwise, write IMP.

• What if both conditions are true?

Efficiency

• Is this algorithm efficient?

• Typically yes, but no if the knapsack capacity is really large…

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms 32 / 32

