
IM 1003: Computer Programming

Recursion, searching, and sorting

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 1 / 27

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Outline

• Recursion

• Searching

• Sorting

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 2 / 27

Recursive functions

• A function is recursive if it invokes itself (directly or indirectly).

• The technique of writing recursive functions is noted as recursion.

• Why recursion?

– Many problems can be solved by dividing the original problem into several

smaller pieces of subproblems.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 3 / 27

smaller pieces of subproblems.

– Typically one or some subproblems are quite similar to the original problem.

– Recursion are sometimes intuitive for implementing this strategy.

Recursive functions: finding the max

• As an example, suppose we want to find the maximum number in

an array A[1..n] (which means A is of size n).

– Strategy 1: Write a loop to compare each number to the current maximum.

– Strategy 2: First find the maximum of A[1..(n – 1)], then compare that

number with A[n].

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 4 / 27

• In strategy 2, we divide the original task into two subtasks:

– Find the maximum of A[1..(n – 1)].

– Compare that number with A[n].

• Let’s visualize this strategy!

• While subtask 2 is simple, subtask 1 is similar to the original task.

– In particular, it can be solved with the same strategy!

Recursive functions: finding the max

• Let’s try to implement strategy 2.

• First, I know I need to write a function whose header is:

– This function returns the maximum among array elements 1 to len.

double max (double array[], int len);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 5 / 27

– This function returns the maximum among array elements 1 to len.

– I want this to happen, though at this moment I do not know how.

• Now let’s implement strategy 2:

– If the function really works, subtask 1 will be completed by invoking

– Subtask 2 is done by comparing subMax and array[len - 1].

double subMax = max (array, len - 1);

Recursive functions: finding the max

• The (wrong) complete implementation is

double max (double array[], int len)

{

double subMax = max (array, len - 1);

if (array[len - 1] > subMax)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 6 / 27

• What will happen if we really invoke this function?

if (array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

Recursive functions: finding the max

• If we really invoke this function, the program will not terminate!

– In particular, even when the argument len is 1 in an invocation, we will still

try to invoke max (array, 0), which does not make sense.

• When we are facing an array whose size is 1, the task should be

solved without using the strategy.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 7 / 27

solved without using the strategy.

– It can be solved trivially: That single number is the maximum!

• With this, we can add a stopping condition into our function.

Recursive functions: finding the max

• The correct

complete

implementation

is:

• Example

double max (double array[], int len)

{

if (len == 1) // stopping condition

return array[0];

else

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 8 / 27

• Example

“08_01_max”.

• Note that both

else can be

removed. Why?

{

// recursive call

double subMax = max (array, len - 1);

if (array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

}

Recursive functions: factorial

• How to write a function that computes the factorial of n?

– Strategy 1: Write a loop to multiply 1, 2, …, and n.

– Strategy 2: First calculate the factorial of n – 1, and then multiply it with n.

int factorial (int n)

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 9 / 27

{

if (n == 1) // stopping condition

return 1;

else

// recursive call

return factorial (n - 1) * n;

}

Recursive functions: factorial

• When we invoke this function with argument 4:

• factorial(4)

= factorial(3) * 4

= (factorial(2) * 3) * 4

= ((factorial(1) * 2) * 3) * 4

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 10 / 27

= ((factorial(1) * 2) * 3) * 4

= ((1 * 2) * 3) * 4

= (2 * 3) * 4

= 6 * 4

= 24

Some remarks

• There must be a stopping condition in a recursive function.

Otherwise, the program won’t stop.

• In many cases, a recursive strategy can also be implemented by a

repetitive strategy.

– E.g., writing a loop for finding a maximum and factorial.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 11 / 27

– E.g., writing a loop for finding a maximum and factorial.

• Compared with an equivalent iterative function, a recursive

implementation is usually simpler and easier to understand.

• However, it generally uses more memory spaces and is more

time-consuming.

– Recall that invoking functions has some cost.

Some more examples

• Write a recursive function to find the nth Fibonacci number.

– The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, …. Each number is the

sum of the two proceeding numbers.

– Finding the nth number can be done if we know the (n – 1)th and (n – 2)th

numbers.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 12 / 27

int fib (int n)

{

if (n == 1)

return 1;

else if (n == 2)

return 1;

else // two recursive calls

return (fib (n-1) + fib (n-2));

}

Some more examples

• Write a recursive function to compute the greatest common divisor

of two integers.

int gcd (int p, int q)

{

if (p == 0)

return q;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 13 / 27

return q;

else if (q == 0)

return p;

else

{

int r = p % q;

return gcd (q, r);

}

}

Complexity issue of recursion

• In some cases, recursion is efficient enough.

– E.g., finding the maximum, factorial, and greatest common divisor.

• In some cases, however, recursion can be very inefficient!

– E.g., Fibonacci.

• Let’s compare the efficiency of two different implementations of

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 14 / 27

• Let’s compare the efficiency of two different implementations of

the Fibonacci problem.

– Example “08_02_fibonacci”.

• Why the recursive implementation is inefficient?

Power of recursion

• Though recursion is sometimes inefficient, typically

implementation is easier.

• When the efficiency is not a big issue, writing recursion for

problem solving is a good idea.

• Let’s consider the classic example “Hanoi Tower”.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 15 / 27

• Let’s consider the classic example “Hanoi Tower”.

– Example “08_03_hanoi”.

– Is there a good way of solving the Hanoi Tower problem with repetition?

Outline

• Recursion

• Searching

• Sorting

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 16 / 27

Searching

• One fundamental task in computation is to search for an element.

– We want to determine whether an element exists in a set.

– If yes, we want to locate that element.

– E.g., looking for a string in an article.

• Here we will discuss how to search for an integer in an one-

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 17 / 27

• Here we will discuss how to search for an integer in an one-

dimensional array.

• Whether the array is sorted makes a big difference.

Searching

• Consider an integer array A[1..n] and a possible element p.

• How to determine whether p exists in A?

• If so, where is it?

– Assume that we only need to find one p even if there are multiple.

• Suppose the array is unsorted.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 18 / 27

• Suppose the array is unsorted.

• One of the most straightforward way is to apply a linear search.

– Compare each element with p one by one, from the first to the last.

– Whenever we find a match, report its location.

– Conclude p does not exist if we end up with nothing.

• The number of instructions we need to execute is roughly

proportional to n, the array size.

Binary search

• What if the array is sorted?

• Certainly we may still apply the linear search.

• However, we may improve the efficiency by implementing a

binary search.

– First, we compare p with the median m (e.g., A[(n + 1) / 2] if n is odd).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 19 / 27

– First, we compare p with the median m (e.g., A[(n + 1) / 2] if n is odd).

– If p equals m, bingo!

– If p < m, we know p must exist in the first half of A if it exists.

– If p > m, we know p must exist in the second half of A if it exists.

– For the latter two cases, we will continue searching in the subarray. Seems

to be familiar with something... ?

• Example “08_04_binarySearch”.

Linear search vs. binary search

• In binary search, the number of instructions to be executed is

roughly proportional to... what?

• So binary search is much more efficient than linear search!

– The difference is huge is the array is large.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 20 / 27

– The difference is huge is the array is large.

– However, binary search is possible only if the array is sorted.

– Is it worthwhile to sort an array before we search it?

• Binary search can also be implemented with repetition.

– Is it natural to do so?

Outline

• Recursion

• Searching

• Sorting

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 21 / 27

Sorting

• Given a one-dimensional integer array A of size n, how to sort it?

• There are many different ways, and here we want to introduce two

well-known methods:

– Insertion sort.

– Merge sort.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 22 / 27

– Merge sort.

Insertion sort

• Given numbers 6, 9, 3, 4, and 7, how would you sort them?

• Imagine that you are playing poker:

– First put the first number 6 aside.

– Take the second number 9 and compare it with 6. Because 9 > 6, put 9 to the

right of 6.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 23 / 27

right of 6.

– Take the third number 3 and compare it with the sorted list (6, 9). Because

3 < 6, put 3 to the left of 6.

– Take the fourth number 4 and compare it with the sorted list (3, 6, 9).

Because 3 < 4 < 6, insert 4 in between 3 and 6.

– Take the fifth number 7 and compare it with the sorted list (3, 4, 6, 9).

Because 6 < 7 < 9, insert 7 in between 6 and 9.

– The result is (3, 4, 6, 7, 9).

Insertion sort

• The key is to maintain a sorted list.

• Then for each number in the unsorted list, insert it into the proper

location so that the sorted list remains sorted.

• How would you implement the insertion sort?

– Recursion or repetition?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 24 / 27

– Recursion or repetition?

– If recursion, why?

• Example “08_05_insertionSort”.

• Roughly how many instructions do we need for insertion sort?

• Does binary search help?

Mergesort (Merge sort)

• Insertion sort is simple and fast!

– Not really “fast”, but faster than many similar sorting algorithm.

– Because its idea and implementation is simple, it is faster than most

algorithms when the array size is small.

• Interestingly, there is another sorting algorithm:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 25 / 27

• Interestingly, there is another sorting algorithm:

– Its idea is somewhat similar to insertion sort.

– But it is significantly faster!

• This algorithm is called mergesort.

Mergesort (Merge sort)

• Recall that in an insertion sort, we need to insert one number into a

sorted list for many times.

• A key observation is that “inserting” another sorted list of size k

into a sorted list (so such “inserting” is actually “merging”) can be

faster than inserting k separate numbers one by one!

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 26 / 27

faster than inserting k separate numbers one by one!

• Given an unsorted array, we will:

– First split the array into two parts, the first half and second half.

– Then sort each subarray.

– Finally, merge these two subarrays.

• Mergesort is perfect for recursion!

Mergesort (Merge sort)

• Interestingly, insertion sort is a special way of running mergesort.

– Not splitting the array into two halves but split it into A[1..n – 1] and A[n].

• Once we use the “smart split”, the efficiency is improved a lot!

– Insertion sort: Roughly proportional to n2.

– Merge sort: Roughly proportional to n log n.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Recursion, Searching, and Sorting 27 / 27

– Merge sort: Roughly proportional to n log n.

• A simple observation can make a huge difference!

