
IM 1003: Computer Programming

Strings

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 1 / 36

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Strings

• In many applications, we need some ways to handle strings.

• E.g., in the address book homework, if we do not have strings:

– We cannot store names.

– We cannot store phone numbers.

– We cannot store addresses.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 2 / 36

– We cannot store addresses.

• Strings can be implemented in two ways:

– C strings as character arrays.

– C++ strings as objects.

Outline

• C strings

• C++ strings

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 3 / 36

Strings

• A C string is a character array.

• We have already used string with cout:

– cout << "Hello world";

• "Hello world" is a string.

• A string is contained in a pair of double quotation.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 4 / 36

• A string is contained in a pair of double quotation.

– A character is contained in a pair of single quotation.

C strings v.s. other arrays

• C strings are nothing but a character array created by the

programmer.

• However, they are “special”.

• For example:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 5 / 36

– While the first one results in a compilation error, the second one can run!

int main()

{

int array[10];

cin >> array;

return 0;

}

int main()

{

char array[10];

cin >> array;

return 0;

}

C strings v.s. other arrays

• For an array A, if we do cin >> A:

– If A is of other types, this is not allowed.

– But for a C string (character array), this allows us to input the string.

int main()

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 6 / 36

{

char array[10];

cin >> array; // if we type "abcde"

cout << array[0]; // 'a'

cout << array[2]; // 'c'

return 0;

}

C strings v.s. other arrays

• For an array A, if we do cout << A:

– If A is of other types, this will print out it memory address.

– But for a C string (character array), this prints out the whole string (some

exceptions will be discussed later).

int main()

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 7 / 36

int main()

{

char array[10];

array[0] = 'a';

array[1] = 'b';

array[2] = 'c';

cout << array; // "abc"

return 0;

}

Input/output a C string

• Because it is too often for a program to input/output a string, the

C++ standard implements << and >> for character arrays in a

special way.

– << and >> are operators.

– This scheme is called operator overloading, which will be discussed later.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 8 / 36

– This scheme is called operator overloading, which will be discussed later.

• The implementation of C string input/output needs to be

investigated in more details.

• Before that, let’s see how to declare a C string.

String declaration and initialization

• A string is declared as a character array.

– char t[100];

• A string may be initialized by using a double quotation.

– char s[100] = "this is a string";

• Whenever we initialize a string with double quotations, a null

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 9 / 36

• Whenever we initialize a string with double quotations, a null

character \0 is appended at the end automatically.

– This marks the end of a string.

– Therefore, length of the string stored in s is 13 + 3 (spaces) + 1 (\0).

String declaration and initialization

• Assignments with double quotations are allowed only for

initialization.

– char s[100];

s = "this is a string"; // compilation error!

• One may assign values to a string by assigning multiple characters.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 10 / 36

• One may assign values to a string by assigning multiple characters.

– s[0] = 't'; s[1] = 'h'; s[2] = 'i'; // and so on

– No null character will be appended. We need to do this by ourselves.

• Alternatively, one may assign values by cin >>.

– cin >> s;

– A null character will also be appended.

– Suppose I enter “yeah!”, the length is 5 + 1.

Understanding the null character

• The null character is one of the escape sequences.

– It is \0, not \o or \O.

• A null character marks the end of a string.

• It may be added into a string by the programmer.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 11 / 36

char a[100] = "abcde FGH";

cout << a; // abcde FGH

char a[100] = "abcde\0 FGH";

cout << a; // abcde

Input/Output a C string

• Consider the following three scenarios:

char a[100];

cin >> a; // input "Hello!"

cout << a; // why not all the 100 characters?

char a[5];

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 12 / 36

char a[5];

cin >> a; // Try to input "1234567890"

cout << a; // Why not only "12345"? Why error?

char a[100];

cin >> a; // Try to input “this is a string"

cout << a; // Why "this" only?

Input/Output a C string

• When one uses cin, C++ always appends a \0 after the input

string. This \0 is a mark of “end of string”.

char a[100];

cin >> a; // input "Hello!"

cout << a; // why not all the 100 characters?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 13 / 36

string. This \0 is a mark of “end of string”.

– \0 is the “null character”.

• So the “string” is printed out, not the whole array.

Input/Output a C string

• C++ does not check array boundary!

• We may or may not touch those memory spaces used by other

char a[5];

cin >> a; // Try to input "1234567890"

cout << a; // Why not only "12345"? Why error?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 14 / 36

• We may or may not touch those memory spaces used by other

programs/variables.

– If a protected space is touched, an error occurs and our program is shutdown.

– If not, cout << is implemented to print out the whole string until the end

of a string, which is marked by a \0.

Input/Output a C string

• When C++ outputs a string, it always treats the first null character

as the end of string.

char a[100];

cin >> a; // Try to input “this is a string"

cout << a; // Why "this" only?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 15 / 36

as the end of string.

• Nevertheless, a white space is not a null character!

• Then why “this” only?

char a[100] = {'a', 'b', ' ', 'c', '\0', 'e'};

cout << a; // ab c

Understanding the null character

• It is because when cin >> read a new line, a white space, or a tab,

it will treat it as the end of input, thus the only “this” is stored into

the array.

• To solve this situation, use cin.getline();.

– cin is an object defined in <iostream>.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 16 / 36

– cin is an object defined in <iostream>.

– getline() is a member function defined in the class of cin.

– cin.getline() treat only end of line as the end of input.

char a[100];

cin.getline(a, 100); // input "this is a string"

cout << a; // "this is a string"

Understanding the null character

• A C string ends with a null character \0.

• Since an initialization with double quotations and cin >> append

null characters for us, usually you do not need to worry about this.

– When something goes wrong, check it.

• At least remember one thing:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 17 / 36

• At least remember one thing:

– When you declare a character array of length n, you can store a string of

length at most n – 1.

A strange problem

• Consider the following example:

char a[100];

int b;

cin >> b;

cin.getline(a, 100);

cout << a;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 18 / 36

• When we input a number and then press “enter”:

– 123 is received by b, \n is received by a.

– Because \n is not a part of a number but it can be part of an array, it will be

treated as the only input for getline().

cout << a;

Fix the Strange Problem

• To fix this problem:

char a[100];

int b;

cin >> b;

cin.get(); // receives \n

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 19 / 36

• You may always add cin.get() after every cin >> for a

numeric variable.

– cin.get(): input a single character.

– You have to append a \0 by yourself.

• No language is perfect.

cin.get(); // receives \n

cin.getline(a, 100);

cout << a;

Useful functions

• Look at your book or the website to find those useful function.

• Mostly in <cstring>.

• atoi() (array to integer) and itoa() (integer to array) are in

<cstdlib>.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 20 / 36

Pointers and character arrays

• We have already known that a character array is a C string.

• As we may use a character pointer to represent a character array,

we may use a character pointer to represent a string.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 21 / 36

Pointers and character arrays

• For example:

char* x = "abcde";

cout << x << endl; // abcde

char* y = x + 2;

cout << y << endl; // cde

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 22 / 36

– x and y are indeed pointers. But when we try to print them out, a string

instead of an address is printed out.

– This is because character pointers are treated as character arrays.

– Six bytes will be allocated to store abcde and a null character.

– Thus we can save some memory spaces by using char*.

cout << y << endl; // cde

Pointers and character arrays

• However, we can only use char*when we also do initialization.

• If not, we will use a pointer variable without memory space

allocated to it.

char* x;

cin >> x; // run time error

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 23 / 36

cin >> x; // run time error

C string arrays

• It looks like a two-dimensional array (actually it is).

• Each row represent a string.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 24 / 36

Outline

• C strings

• C++ strings

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 25 / 36

C++ Strings: string

• From now on, we’ll say:

– C string: the string represented by a character array with a \0 at the end.

– C++ string: the class string defined in <string>.

• The C++ string is more convenient and powerful than C string.

We’ll learn to use it right now.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 26 / 36

We’ll learn to use it right now.

• To use C++ strings, #include <string>.

• In the class string, there are:

– A member variable, which is a character array whose length can vary.

– Many member functions.

string declaration

• string myString;

• string myString = "my string";

– string is a class defined in <string>.

– string is not a C++ keyword.

– myString is an object.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 27 / 36

– myString is an object.

• A C++ string does not need a null character.

• You can use the member function length() to get the number of

characters in a string.

– e.g., myString.length() returns 9.

string assignment

• C++ string assignment is easy and intuitive:

string myString = "my string";

string yourString = myString;

string herString;

herString = yourString;

herString = "a new string";

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 28 / 36

• We may also assign a C string to a C++ string.

herString = "a new string";

char hisString[100] = "oh ya";

myString = hisString;

string concatenation

• C++ strings can be concatenated with +.

string myString = "my string ";

string yourString = myString;

string herString;

herString = myString + yourString;

// "my string my string "

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 29 / 36

• String literals or C strings also work.

• += also works.

// "my string my string "

string s = "123";

char c[100] = "456";

string t = s + c;

string u = s + "789" + t;

string indexing and input

• When we want to access a character in a C++ string, we may treat

it as a usual array.

• When we use cin >> to input into a C++ string, white spaces may

string myString = "my string";

char a = myString[5]; // r

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 30 / 36

• When we use cin >> to input into a C++ string, white spaces may

still create problems.

• To fix this, now we cannot use cin.getline().

– The first argument of cin.getline() can only be a character array.

– We will use another function instead.

string input: getline()

• Use getline(cin, a string object).

– This is defined in <string>.

• Note that there is no length limitation.

string s;

getline(cin, s);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 31 / 36

• Note that there is no length limitation.

Substring

• We may use the member function substr() to get the substring

of a string.

• As an example:

substr(begin index, # of characters)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 32 / 36

• As an example:

string s = "abcdef";

string b = s.substr(2, 3);

// b == "cde"

string comparison

• We may use >, >=, <, <=, ==, != to compare two C++ strings.

• It is easy to find the comparison rule by yourself.

• String literals or C strings also work.

– As long as one side of the comparison is a C++ string, it is fine.

– However, if none of the two sides is a C++ string, there will be an error.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 33 / 36

– However, if none of the two sides is a C++ string, there will be an error.

string finding

• We may use the member function find() to look for a string or

character in a string.

• This will return the beginning index of the argument, if it exists, or

find(a string)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 34 / 36

• This will return the beginning index of the argument, if it exists, or

string::npos, which is a variable in the namespace string, if

not found.

• String literals or C strings can also be the argument.

string finding

• As an example:

string s = "abcdefg";

int i = s.find("bcd"); // i == 1;

string t;

cin >> t;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 35 / 36

cin >> t;

if(t.find("a") == string::npos)

cout << "not containing a";

stringmodifying

• We may use insert(), replace(), and erase() to modify a

string.

• Look up these functions of string, and more, from your book or a

website.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Arrays and Strings 36 / 36

