
IM 1003: Computer Programming

Classes (Part 1)

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 1 / 42

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Outline

• Basic ideas

• Visibility and encapsulation

• this and that

• Constructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 2 / 42

Object-oriented programming

• Until now, we have focused on procedural programming.

• The keys in it are logical controls and subprocedures. In other

words, if, for, and functions.

• We will begin to introduce a new programming methodology:

object-oriented programming (OOP).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 3 / 42

object-oriented programming (OOP).

• It is based on procedural programming.

• It is different from procedural programming from the perspective

of thinking.

Classes and objects

• In C, we use structures; in C++, we use classes.

• Like structures, we can use classes to define data types by

ourselves and create variables called objects.

• As we will see, classes are much more powerful than structures.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 4 / 42

Classes and objects

• In a class, we can define variables and functions, just as we did in

a structure.

– They are call member variables and member functions.

• However, now there are four types of class members:

– Instance variables (default).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 5 / 42

– Instance variables (default).

– Static variables.

– Instance functions (default).

– Static functions.

• Starting from now, when we say member variables (fields) and

member functions, we are talking about instance ones.

An example in struct

struct Point

{

int x;

int y;

char name;

};

int main()

{

Point A;

A.name = 'A';

A.x = 20;

A.y = 30;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 6 / 42

};

void print(Point p);

void print(Point p)

{

cout << p.name << "("

<< p.x << ", "

<< p.y << ")";

}

A.y = 30;

print(A); // A(20, 30)

return 0;

}

An example in class

class Point // class declaration

{

public: // visibility

int x; // instance variable declaration

int y;

char name;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 7 / 42

char name;

void print(); // instance function declaration

};

void Point::print() // instance function definition

{

cout << name << "("

<< x << ", " << y << ")";

}

An example in class

int main()

{

Point A; // an object

A.name = 'A';

A.x = 20;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 8 / 42

A.x = 20;

A.y = 30;

A.print(); // invoking instance function

return 0;

}

Instance functions

• When using a class, we define instance functions in the class and

invoke them through objects.

• Instance functions are functions that do something with this

object’s instance variables or functions.

– e.g., print().

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 9 / 42

– e.g., print().

Class definition

• Keyword: class.

• Declare instance function in the class definition, and then define

the function after the class definition.

• A semicolon is needed.

• To define an instance function outside

class Point

{

// ...

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 10 / 42

• To define an instance function outside

the class definition, we need to use a

scope resolution operator “::” to tell

the compiler that it belongs to the class.

– class name::function name(parameters)

// ...

// declaration

void print();

}; // semicolon

// definition

void Point::print()

{

cout << name << "("

<< x << ", "

<< y << ")";

} // no semicolon

Instance function definition

• We may also define the function inside the class definition.

class Point

{

// ...

// declaration and definition

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 11 / 42

// declaration and definition

void print()

{

cout << name << "("

<< x << ", "

<< y << ")";

} // no semicolon

}; // semicolon

Invoking instance functions

• In the main function, we use A.print() instead of print(A).

int main()

{

Point A; // an object

// instance function invocation

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 12 / 42

• To invoke an instance function through an object, use “.”.

– object name.function name(arguments);

// instance function invocation

A.print();

return 0;

}

• Instance functions may also have parameters:

Instance functions with parameters

int main()

{

Point A;

A.setValue(20, 30, 'A');

class Point

{

// ...

void setValue(int, int, char);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 13 / 42

A.setValue(20, 30, 'A');

A.print();

return 0;

}

void setValue(int, int, char);

};

void Point::setValue(int a, int b, char c)

{

x = a;

y = b;

name = c;

}

Object pointers

• What we have done is to use an object to invoke instance functions.

• If we have a pointer ptrA pointing to the object A, you may use

(*ptrA).print() to invoke the instance function print().

– *ptrA returns the object A.

• To simplify this, C++ creates the operator ->.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 14 / 42

• To simplify this, C++ creates the operator ->.

– This is specifically for an object pointer to access its members.

– (*ptrA).print() is equivalent to ptrA->print().

– (*ptrA).x is equivalent to ptrA->x.

• An example of using an

object pointer:

• Here new Point is

required. Otherwise no

memory space will be

Object pointers

int main()

{

// an object pointer

Point* ptrA = new Point;

// instance function invocation

ptrA->setValue(20, 30, 'A');

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 15 / 42

memory space will be

allocated for “a real point”!

• Alternatively, we may write

– Point A;

Point* ptrA = &A;

• In which case does such a memory space have a name?

ptrA->setValue(20, 30, 'A');

ptrA->print();

return 0;

}

Invoking instance functions in classes

• In an instance function, you can invoke another instance function

(or itself recursively).

void Point::printDistance()

{

cout << distance();

class Point

{

// ...

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 16 / 42

cout << distance();

}

double Point::distance()

{

double a = static_cast<double>(x);

double b = static_cast<double>(y);

return sqrt(a * a + b * b); // <cmath>

}

// ...

double distance();

void printDistance();

};

Outline

• Basic ideas

• Visibility and encapsulation

• this and that

• Constructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 17 / 42

Visibility

• We can set visibility of members in a class:

– public: it can be accessed anywhere.

– private: it can be accessed only in the class.

– protected: discussed later in this semester.

• These three keywords are the visibility modifiers.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 18 / 42

• These three keywords are the visibility modifiers.

• If we remove the publicmodifier, the program will not run.

– It is because the default level of visibility is private.

• By setting visibility, we can hide our instance members (usually

variables).

– Before we ask why, let’s see how to set visibility.

Visibility

• A class with different visibility levels:

class Point

{

private: // private members

int x;

int y;

int main()
{
Point A;
A.setValue(20, 30, 'A');
// A.x = 20 is wrong

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 19 / 42

– Private instance members can only be accessed inside the definition of

instance functions.

– Now, is it allowed to have a point with only the x-coordinate?

int y;

char name;

public: // public members

void setValue(int a, int b, char n);

void print();

};

// A.x = 20 is wrong
A.print();
return 0;

}

Why data hiding?

• In general, when we write a class, we want it to work as we expect.

– That is, “under control”.

• For example, we do not want a point to be printed out in strange

formats, such as A{20, 30}, A:20, 30, etc.

• If we allow one to access x, y, and name in the main function, he

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 20 / 42

• If we allow one to access x, y, and name in the main function, he

can print out a point in any way he likes!

• To prevent this, we set instance variables to be private and leave

print() public. When one (typically another programmer) wants

to print out a point, the only available format is A(20, 30).

Why data hiding? Another example

class BankAccount

{

public:

int balance;

void deposit(int amount)

void withdraw(int amount)

bool transferTo(int amount, BankAccount to);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 21 / 42

bool transferTo(int amount, BankAccount to);

};

void BankAccount::deposit(int amount)

{

balance += amount;

}

void BankAccount::withdraw(int amount)

{

balance -= amount;

}

Why data hiding? Another example

bool BankAccount::transferTo(int amount, BankAccount to)

{

if (amount >= balance)

{

withdraw(amount);

to.deposit(amount);

return true;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 22 / 42

return true;

}

else

return false;

}

Why data hiding? Another example

• Suppose another programmer needs to use the class BankAccount

to write an ATM program.

• If balance is public, we can not predict what will be done on

balance.

– The programmer may modify balance in a wrong way.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 23 / 42

– The programmer may modify balance in a wrong way.

– E.g., he may write a transfer function without checking the balance!

• As the developer of a class, we should set balance private and

design/implement appropriate member functions for others to use.

Visibility

• In general, some instance variables/functions should not be

accessed directly (or even known) by other ones. They should be

used only in the class.

• In this case, set them private.

• You may see many classes with all instance variables private and

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 24 / 42

• You may see many classes with all instance variables private and

all instance functions public.

– If you do not know what to do, do this.

– However, any instance function that should not be invoked by others

should also be private.

• In the following example, if distance() is not allowed to be

invoked by others, it should be private.

Private instance functions

void Point::printDistance()

{

cout << distance();

}

class Point

{

private:

// ...

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 25 / 42

}

double Point::distance()

{

double a = static_cast<double>(x);

double b = static_cast<double>(y);

return sqrt(a * a + b * b);

}

// ...

double distance();

public:

void setValue(int x, int y, char name);

void print();

void printDistance();

};

Encapsulation

• The concept of packaging (member variables and member

functions) and data hiding is together called “encapsulation”.

– Roughly speaking, we pack data (member variables) into a black box and

provide only controlled interfaces (member functions) for others to access

these data.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 26 / 42

– Others should not even know how those interfaces are implemented.

• For OOP, there are three main characteristics/functionalities:

– Encapsulation.

– Inheritance.

– Polymorphism.

• The last two will be discussed later in this semester.

Outline

• Basic ideas

• Visibility and encapsulation

• this and that

• Constructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 27 / 42

this

• When you create an object, it occupies a memory space and has an

address.

• this is a pointer storing the address of the object.

– this is a C++ keyword.

• When the compiler reads this, it looks at the memory space to

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 28 / 42

• When the compiler reads this, it looks at the memory space to

find the object you are referring to.

this

• The function implementation

void Point::print()
{
cout << name << "(" << x

<< ", " << y << ")";
}

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 29 / 42

is equivalent to

}

void Point::print()
{
cout << this->name << "(" << this->x

<< ", " << this->y << ")";
}

this

• Suppose x is an instance variable.

– Usually you can use x directly instead of this->x.

– However, if you want to have a local variable or function parameter

having the same name with an instance variable, you need this->.

void Point::setValue(int x, int y, char name)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 30 / 42

– A local varialbe hides the instance variable with the same name.

– this->x: the instance variable, x: the local variable.

void Point::setValue(int x, int y, char name)

{

this->x = x;

this-> y = y;

this-> name = name;

}

Good programming style

• You may choose to always use this->when accessing instance

variables and functions.

• This will allow other programmers (or yourself in the future) to

know they are members without looking at the class definition.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 31 / 42

Instance function overloading

• You can overload an instance function with different parameters as

well as what we did for global functions.

double Point::distance()

{

double a = static_cast<double>(x);

double b = static_cast<double>(y);

class Point

{

private:

// ...

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 32 / 42

double b = static_cast<double>(y);

return sqrt(a * a + b * b);

}

double Point::distance(Point to)

{

double a = static_cast<double>(x – to.x);

double b = static_cast<double>(y – to.y);

return sqrt(a * a + b * b);

}

// ...

double distance();

double distance(Point to);

public:

// ...

void print();

void printDistance();

void printDistance(Point to);

};

Objects as parameters or return values

• You can pass an object into any function as well as what we did

with structures.

• A function can return an object.

• Point vector(Point p1, Point p2);

– This should be a global function rather than an instance

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 33 / 42

– This should be a global function rather than an instance

function. Why?

Objects as instance variables

• A instance variable’s type can be a class.

• In other words, an object can have other objects as members.

– Recall that this can also happen for structures.

• As an example, we may define a class Triangle that contains

three Point objects.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 34 / 42

three Point objects.

class Triangle

{

private:

Point point1;

Point point2;

Point point3;

// ...

};

Object arrays

• You can create an array whose elements are objects.

class Triangle

{

private:

Point endPoints[3];

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 35 / 42

Point endPoints[3];

// ...

};

Outline

• Basic ideas

• Visibility and encapsulation

• this and that

• Constructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 36 / 42

Constructors

• It is an instance function of a class.

– However, it is very special.

• A constructor will be invoked automatically when the object is

created.

– It must be invoked.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 37 / 42

– It must be invoked.

– It cannot be invoked twice.

– It cannot be invoked by the programmer manually.

• Usually it is used to initialize the object.

Constructors

• A constructor’s named is the same as the class.

• It does not return anything, even void.

• You can (and usually you will) overload constructors.

• The constructor with no parameter is the default constructor.

• If a programmer does not define any constructor, the compiler

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 38 / 42

• If a programmer does not define any constructor, the compiler

makes a default one which does nothing.

– Once the programmer defines a constructor (with or without parameters),

the complier will not create a default constructor.

• A constructor may be private.

– In this course, you probably will not need to have private constructors.

Constructors: Example

• Let’s implement two constructors for Point:

// default constructor
Point::Point()
{
this->x = 0;
this->y = 0;
this->name = ' ';

// another constructor
Point::Point(int x, int y, char name)
{
this->x = x;
this->y = y;
this->name = name;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 39 / 42

this->name = ' ';
}

this->name = name;
}

class Point

{

// ...

public:

Point();

Point(int x, int y, char name);

};

Constructors: Example

• Now, when we create objects:

int main()

{

Point A(10, 15, 'A');

A.print(); // A(10, 15)

A.printDistance(); // 18.0278

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 40 / 42

– Example “11_01_Point”.

A.printDistance(); // 18.0278

Point B;

B.print(); // (0, 0)

B.printDistance(); // 0

return 0;

}

Good programming style

• If any member variable needs an initial value when an object is

created, you should write a constructor to initialize it.

• Use constructor overloading to provide flexibility of initializing

member variables.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 41 / 42

Timing for invoking constructors

• When a class has other classes as types of instance variables, when

do all the constructors be invoked?

– Example “11_02_Triangle”.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 1) 42 / 42

