
IM 1003: Computer Programming

Classes (Part 2)

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 1 / 27

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Outline

• Static members

• Objects and pointers

• friend

• Destructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 2 / 27

Static members

• A member variable/function may be an attribute/operation of a

class, not an object.

• This happens when the attribute/operation is class-specific rather

than object-specific.

– It should be identical for all objects of this class.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 3 / 27

– It should be identical for all objects of this class.

• These variables/functions are called static members.

• The annual registration

fee for all cars (at least for

those in the same type) is

identical.

• The member functions

Static members: an example

class Car

{

private:

// ...

static int regFee;

// static variable declaration

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 4 / 27

• The member functions

that access only static

member variables can be

set static.

// static variable declaration

public:

// ...

static int getRegFee();

static void setRegFee();

// static function declaration

};

• You cannot initialize a

static variable inside the

class definition.

• You have to initialize a

static variable.

Static members: an example

double Car::regFee = 200;
// static variable initialization

double Car::getRegFee()
{
return Car::regFee;
// or return regFee;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 5 / 27

static variable.

• You have to initialize a

static variable globally.

// or return regFee;
}

void Car::setRegFee(int regFee)
{
Car::regFee = regFee;

}

Static members: an example

• For static functions, you may still write

class Car

{

// ...

public:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 6 / 27

– You just cannot assign values to static (actually any) variables inside the
class definition block.

public:

// ...

static double getRegFee()

{ return Car::regFee; }

static void setRegFee(int regFee)

{ Car::regFee = regFee; }

}

Static members: an example

• To access static members, use class name::member name.

int main()

{

Car c;

cout << Car::getRegFee();

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 7 / 27

cout << Car::getRegFee();

cout << endl;

Car::setRegFee(150);

return 0;

}

Static members

• Recall that we have four types of members:

– Instance variables and instance functions.

– Static variables and static functions.

• Some rules regarding static members:

– You cannot access an instance member inside a static function. Why?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 8 / 27

– You cannot access an instance member inside a static function. Why?

– You may access a static member inside an instance function.

– Though not suggested, you may access a static member through an object.

Car c;

cout << c.getRegFee() << endl;

Good programming

• If one attribute should be identical for all objects, it should be

declared as a static variable.

– Do not make it an instance variable and try to maintain consistency.

• Do not use an object to invoke a static member.

– This will confuse the reader.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 9 / 27

– This will confuse the reader.

• Use class name::member name even inside member

function definition to show that it is a static member.

– The reason is the same as using this->.

Outline

• Static members

• Objects and pointers

• friend

• Destructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 10 / 27

Objects and pointers

• You can use a pointer to point to an object.

• This can be more useful than pointing to a basic data type.

• One of those important reasons is that passing a pointer is more

efficient than passing the whole object.

– A pointer is smaller than an object.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 11 / 27

– A pointer is smaller than an object.

– Copying a pointer is easier than copying an object.

– Copying an object requires one to be careful!

• Other reasons will be discussed in other lectures.

Objects and pointers

• When you use a pointer to access an object, you may use “->”.

• Otherwise, you have to use “*”, such as (*ptrA).print().

Point* prtA = &A; // a pointer to an object

(*ptrA).print(); // A(10, 20)

ptrA->print(); // A(10, 20)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 12 / 27

ptrA->print(); // A(10, 20)

Passing objects into a function

• Consider a function that

– Takes three points as the input and returns the center of gravity.

Point cenGrav(Point p1, Point p2, Point p3, char n)

{

double x = (p1.getX() + p2.getX() + p3.getX()) / 3;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 13 / 27

– We need to create four Point objects in this function.

– Example “12_01_objectPointer”: The constructor is invoked four times!

double x = (p1.getX() + p2.getX() + p3.getX()) / 3;

double y = (p1.getY() + p2.getY() + p3.getY()) / 3;

Point cog(x, y, n);

return cog;

}

Passing object pointers into a function

• We may rewrite this function and pass pointers rather than objects

into this function:

Point cenGrav(Point* p1, Point* p2, Point* p3, char n)

{

double x = (p1->getX() + p2->getX() + p3->getX()) / 3;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 14 / 27

– We need to create only one Point object in this function.

– Example “12_01_objectPointer”.

– Nevertheless, using pointers to access members requires more time.

double x = (p1->getX() + p2->getX() + p3->getX()) / 3;

double y = (p1->getY() + p2->getY() + p3->getY()) / 3;

Point cog(x, y, n);

return cog;

}

Copying an object

• When do we copy an object?

– When we pass an object into a function using the call-by-value mechanism.

– When we assign an object to another object.

– When we create an object with another object as the argument of the

constructor.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 15 / 27

• When an object is created by copying another object, the copy

constructor will be invoked.

– If the programmer does not define one, the compiler add a default copy

constructor into the class.

– The default copy constructor simply copies all member variables one by one,

no matter a variable is of a basic data type, an array, a pointer, or an object.

– Example “12_02_copyConstructor”.

Copy constructors

• We may implement our own copy constructor.

• The input of a copy constructor must be a constant reference.

Point::Point(const Point& p)

{

x = p.x;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 16 / 27

– This has nothing different from the default copy constructor.

x = p.x;

y = p.y;

name = p.name;

}

Shallow copy

• If no member variable is an array or a pointer, a default copy

constructor is enough.

• If there is any array or pointer member variable, the default copy

constructor does a “shallow copy”.

• Consider a class Triangle containing a Point array.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 17 / 27

• Consider a class Triangle containing a Point array.

class Triangle

{

private:

Point* endPoints;

// ...

};

Shallow copy

• Suppose in Triangle t2, t2.endPoint currently points to three

points (through, e.g., endPoint = new Point[3]).

• Suppose we adopt the default copy constructor.

• When we do Triangle t3 = t2:

– t3.endPointwill point to the same three points!

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 18 / 27

– t3.endPointwill point to the same three points!

– The default copy constructor does not create new points for us. It simply
copies the value of t2.endPoint to t3.endPoint.

– Once a point is moved in one triangle, that point in the other triangle will

also be moved!

– Example “12_03_shallowCopy”.

Deep copy

• To correctly copy a triangle (by creating new points), we need to

write our own copy constructor.

• We say that we need to implement a “deep copy” by ourselves.

– In the self-defined copy constructor, we manually create points, set their
values with the original points, and use endpoint to point to them.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 19 / 27

values with the original points, and use endpoint to point to them.

– Example “12_04_deepCopy”.

Shallow copy vs. deep copy

• A comparison between

shallow copy and deep

copy.

• Why not endPoint =

t.endPoint; in deep

Triangle::Triangle(const Triangle& t)

{

endPoint = t.endPoint;

name = t.name;

}

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 20 / 27

t.endPoint; in deep

copy?
Triangle::Triangle(const Triangle& t)

{

endPoint = new Point[3];

for(int i = 0; i < 3; i++)

endPoint[i] = t.endPoint[i];

// endPoint = t.endPoint;

name = t.name;

}

Outline

• Static members

• Objects and pointers

• friend

• Destructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 21 / 27

friend for functions and classes

• One class can allow its “friends” to access its private members.

• Its friends can be global functions or other classes.

– Then inside test() and member

functions of Test, those private

members of Point can be accessed.

class Point

{

// ...

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 22 / 27

– Point cannot access Test’s members.

• A friend can be declared in the public or private section.

• A class must declare its friends by itself.

– One cannot declare itself as another one’s friend!

// ...

friend void test();

friend class Test;

};

friend: an example
void test()

{

Point p;

p.x = 100; // syntax error if not a friend

cout << p.x; // syntax error if not a friend

}

class Test

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 23 / 27

class Test

{

public:

void test(Point p)

{

p.x = 200; // syntax error if not a friend

cout << p.x; // syntax error if not a friend

}

};

friend for functions and classes

• Declare friends only if data hiding is preserved.

– Do not set everything public!

– Use structures rather than classes when nothing should be private.

– Write appropriate public member functions.

• friendmay also help you hide data.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 24 / 27

• friendmay also help you hide data.

– If a private member should be accessed only by another class/function, you

should declare a friend instead of writing a getter/setter, which may be

invoked by everyone.

Outline

• Static members

• Objects and pointers

• friend

• Destructors

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 25 / 27

Destructors

• A destructor is invoked right before an object is destroyed.

– It should be public and have no parameter.

• To replace the default destructor by a self-defined one, use ~:

class Point

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 26 / 27

{

// ...

public:

// ...

// destructor

~Point() { cout << "Bye!\n"; }

};

Destructors

• One important mission to be done by a destructor is to release

those dynamically-allocated memory spaces pointed by member

variables.

– The default destructor does not do this.

– One must do this by herself/himself.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 – Classes (Part 2) 27 / 27

– One must do this by herself/himself.

– If this is not done, there will be memory leaks.

Triangle::~Triangle()

{

delete [] endPoint;

}

