
IM 1003: Computer Programming

Polymorphism

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 1 / 26

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Outline

• Polymorphism

– Preparation

– Basic ideas and the first example

– Virtual functions

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 2 / 26

• We have defined two classes:

Parent and child classes

class Auto

{

protected:

class Minivan : public Auto

{

private:

static int regPer;

static int regCase;

static int spePer;

static int speCase;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 3 / 26

protected:

string plate;

int mpl;

int mileage;

int gas;

public:

// ...

};

static int speCase;

bool isReg;

public:

// ...

};

• Suppose we have defined a member function hasHigherMpl() in

Auto, which compares a given Auto’s mplwith that of the Auto

invoking this function.

Parent and child classes

bool Auto::hasHigherMpl(Auto a)

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 4 / 26

{

if(this->mpl > a.mpl)

return true;

else

return false;

}

• We have also defined

a member function

print() in Auto and

then overrode it in

Minivan.

Parent and child classes

void Auto::print()

{

cout << this->plate << " " << this->mpl << " "

<< this->mileage << " " << this->gas;

}

void Minivan::print()

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 5 / 26

Minivan.

• We will use these

functions to illustrate

the idea of

polymorphism.

{

Auto::print();

cout << " ";

if(this->isReg == true)

cout << "(" << this->regPer << ", "

<< this->regCase << ")";

else

cout << "(" << this->spePer << ", "

<< this->speCase << ")";

}

Outline

• Polymorphism

– Preparation

– Basic ideas and the first example

– Virtual functions

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 6 / 26

Comparisons among different classes

• Consider the hasHigherMpl() function of Auto. This allows us

to compare an Autowith another Auto.

Auto a1("car1", 10);

Auto a2("car2", 12);

cout << a1.hasHigherMpl(a2); // 0 or 1?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 7 / 26

• What if we want to compare an Autowith a Minivan?

• We “may” use function overloading.

cout << a1.hasHigherMpl(a2); // 0 or 1?

Comparisons among different classes

bool Auto::hasHigherMpl(Auto a)

{

if(this->mpl > a.mpl)

return true;

else

return false;

}

• With function overloading, we

may define another

hasHigherMpl()whose

parameter is a Minivan.

• If there is another class Truck,

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 8 / 26

}

bool Auto::hasHigherMpl(Minivan m)

{

if(this->mpl > m.mpl)

return true;

else

return false;

}

• If there is another class Truck,

we may define one more.

• Two things are bad:

– All these hasHigherMpl() are

almost identical.

– Whenever we create one more

type of auto, we need to modify

the parent class Auto.

Comparisons among different classes

• We want to compare:

– An Autowith an Auto

– An Autowith a Minivan

– A Minivanwith an Auto

– A Minivanwith a Minivan.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 9 / 26

– A Minivanwith a Minivan.

• “It seems that” we need

– Two overloaded instance functions in Auto.

– Two overloaded instance functions in Minivan.

• With a parent class Auto and n child classes, “it seems that” we

need (n + 1)2 almost identical instance functions!

• Does inheritance help?

Comparisons among different classes

• Fortunately, inheritance allows us to define only n + 1 functions in

the parent class Auto.

– Then all child classes inherit these functions.

• But the two drawbacks are still there:

– We still need n + 1 almost identical hasHigherMpl().

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 10 / 26

– We still need n + 1 almost identical hasHigherMpl().

– When we create a child class, we need to modify the parent class Auto.

• Can we do better?

Store different types of autos

• Suppose in a program, there are all kinds of autos: sedans, trucks,

minivans, etc.

• We want to store all these autos in arrays.

– In C++, all elements in an array must have the same type.

– Do we need to prepare one separate array for each type of autos?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 11 / 26

– Do we need to prepare one separate array for each type of autos?

– May we store all of them in one single array?

Polymorphism

• The three principles of OOP are

– Encapsulation

– Inheritance

– Polymorphism

• Polymorphism: a lot of appearances.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 12 / 26

• Polymorphism: a lot of appearances.

– One thing can behave differently in different situations.

• It requires inheritance.

– It can be applied only on ancestor-descendent relationships.

• It is the most difficult to understand.

• However, it can be very useful and powerful.

– At least it will help us solve the two problems we just mentioned.

Variables vs. values

• To apply it, first we need to differentiate a variable’s type and a

value’s type.

– A variable can store values and must have a type. E.g., a double variable is

a container which “should” store a double value.

– A value is the thing that is stored in a variable (put into a container). E.g.,
12.5 or 7.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 13 / 26

12.5 or 7.

– Note that the value has its own type, which may be different from the

variable/container’s type.

• In C++, the way we implement polymorphism is to

“Use a variable of a parent type to

store a value of a child type.”

Polymorphism

• Suppose we have the following two classes:

class A // A is B's parent
{
public:
void f() { cout << "AAA!\n"; }

};

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 14 / 26

• Then we can write…

• Though this is allowed, what is a?

– It is an A object or a B object?

};
class B : public A // B is A's child
{
public:
void f() { cout << "BBB!\n"; }

};

B b;

A a = b;

Polymorphism

• Similarly, we may write

– Is a an Auto or a Minivan?

Minivan m;

Auto a = m;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 15 / 26

– Is a an Auto or a Minivan?

• This is exactly “using a variable of a parent type to store a value of

a child type”.

• Let’s go back to our example with classes A and B.

• What will happen if we invoke f(), the overridden function?

– Easier: How about b.f()?

– Harder: How about a.f()?

B b;

A a = b;

Polymorphism

int main()
{
B b;
A a = b;
b.f(); // BBB!
a.f(); // AAA!

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 16 / 26

• No matter what is the type of the value a contains, because a’s

type is A, a.f()will call A::f().

• It is because at the time of compilation, the compiler does not

know what value awill contain when a.f() is executed.

– a.f() is bound with the container a’s type A. This is called “early binding”.

a.f(); // AAA!
return 0;

}

How polymorphism helps

• Thanks to polymorphism, because Minivan inherits Auto, an

Auto variable can store a Minivan value.

• Thus, the following program is valid:

Auto anAuto;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 17 / 26

Minivan aMinivan;

Auto who;

who = anAuto; // no error

who.print();

who = aMinivan; // no error

who.print();

How polymorphism helps

• Therefore, we can simply define one single function

hasHigherMpl(Auto a) in Auto.

• The parameter’s type is Auto. Because Minivan is a child of

Auto, a can store the value of an Auto or a Minivan.

Auto a1("car1", 10);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 18 / 26

• So only one definition of hasHigherMpl() is enough!

Auto a1("car1", 10);

Minivan m("minivan1", 9);

Auto a2("car2", 12);

a1.hasHigherMpl(a2); // no error

a1.hasHigherMpl(m); // no error

Polymorphism

• The most frequently used applications of polymorphism are

– In a function parameter.

– In an array.

• We can have an array of Auto to store Minivan, Sedan, Truck,

etc., without multiple separated arrays.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 19 / 26

etc., without multiple separated arrays.

Outline

• Polymorphism

– Preparation

– Basic ideas and the first example

– Virtual functions

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 20 / 26

How to invoke the right function?

• Consider the next example:

Auto a("car1", 10);

Minivan m("minivan1", 9);

Auto who[2];

who[0] = a;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 21 / 26

• a can only invoke Auto::print(), since the rule of

polymorphism is to invoke the overridden function according to

the type of the container, not the type of the value.

who[0] = a;

who[1] = m;

who[0].print(); // four attributes

who[1].print(); // still four attributes orz

Virtual functions

• The solution is to use “virtual functions” to do “late binding”.

– A virtual function is still an instance function.

– However, it implements late binding.

• If a virtual function is overridden, it will be invoked according to

the value’s type, not the container’s type.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 22 / 26

the value’s type, not the container’s type.

• Declaring a virtual function:

– We do not need to declare virtual in child classes. However, doing so makes

the program clearer.

class Auto
{
// ...
virtual void print(); // virtual function

};

Virtual functions

• To implement late binding, we need to do one more thing: Using

pointers instead of “real objects”.

• When we write Auto a;, the compiler creates a real Auto object.

– It allocates a memory space for the four instance variables.

• No matter what value is assigned to a, a is still an Auto object.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 23 / 26

• No matter what value is assigned to a, a is still an Auto object.

– In particular, if a Minivan is assigned to a, isRegwill be discarded.

– It is thus impossible to print out anything regarding isReg.

• However, when we write Auto* a;, the compiler only creates an

Auto pointer.

– It can point to an Auto, a Minivan, or any descendent of Auto.

• Therefore, we will use a pointer to “mimic” an object.

Virtual functions

• A parent pointer can point to a child object.

• The compiler will determine the function to invoke during the

running time (late binding).

Auto a("car1", 10);

Minivan m("minivan1", 9);

Auto* who = NULL;

who = new Auto("car1", 10);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 24 / 26

Minivan m("minivan1", 9);

Auto* who;

who = &a;

who->print(); // four attributes

who = &m;

who->print(); // six attributes

who = new Auto("car1", 10);

who->print(); // four attributes

delete who;

who = new Minivan("minivan1", 9);

who->print(); // six attributes

delete who;

Example

• Why in the following

program, still only four

attributes are printed out

for Minivan values?

• How to modify it?

void print(Auto autos[], int n)
{
for(int i = 0; i < n; i++)
autos[i].print(); // four attributes

}

int main()
{
Auto a("a", 10);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 25 / 26

• How to modify it?

– You also need to use

pointers as function

parameters to implement

late binding.

{
Auto a("a", 10);
Minivan m1("m1", 8), m2("m2", 9);
Auto autos[3]; // early binding
autos[0] = a; autos[1] = m1; autos[2] = m2;
print(autos, 3);
return 0;

}

Summary

• It is a technique to make our program clearer, more flexible and

more powerful.

– It is based on inheritance.

– It is tightly related to function overriding, late binding, and virtual

functions.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 26 / 26

• The key action is to “use a variable/container of a parent type to

store a value of a child type”.

• To implement late binding, you need to

– Declare virtual functions and

– Use parent pointers to point to child objects.

