
Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 1 / 62

IM 1003: Programming Design

Control Statements

Ling-Chieh Kung

Department of Information Management

National Taiwan University

February 24, 2014

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 2 / 62

Outline

• Preparations

– Preprocessors and namespaces

– Basic data types

• Selection

• Repetition

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 3 / 62

Preprocessors and namespaces

• Recall that our first C++ program was

• Now it is time to formally introduce the first two lines.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 4 / 62

Preprocessors

• Preprocessor commands, which
begins with #, performs some actions

before the compiler does the
translation.

• The include command here is to

include a header file:

– Files containing definitions of
common variables and functions.

– Written to be included by other
programs.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 5 / 62

Preprocessors

• #include <iostream>

– iostream is part of the C++

standard library. It provides
functionalities of data input and
output, e.g., cout and cin.

• Before the compilation, the compiler
looks for the iostream header file

and copy the codes therein to replace
this line.

– The same thing happens when
we include other header files.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 6 / 62

Including header files

• In this program, we include the iostream file for the cout object.

• With angle brackets (< and >), the compiler searches for “iostream” in the C++

standard library.

• We may define our own variables and functions into self-defined header files
and include them by ourselves:

– #include "C:\myHeader.h";

– Use double quotation marks instead of angle brackets.

– A path must be specified.

• We will not use self-defined header files in the first half of this semester.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 7 / 62

Namespaces

• What is a namespace?

• Suppose all roads in Taiwan have
different names. In this case, we do
not need to include the city/county
name in our address.

– This is why we do not need to
specify the district for an address
in the Taipei city.

– But we need to specify the district
for an address in the New Taipei
County.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 8 / 62

Namespaces

• A C++ namespace is a collection
(space) of names.

– For C++ variables, functions,
objects, etc.

– The objects cout, cin, and all

other items defined in the C++
standard library are defined in the
namespace std..

• By writing using namespace std;,

whenever the compiler sees a name, it
searches whether it is defined in this
program or the namespace std.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 9 / 62

The scope resolution operator (::)

• Instead, we may specify the namespace of cout each time when we use it with
the scope resolution operation ::.

• Most programmers do not need to define their own namespaces.

– Unless you really want to name your own variable/object as cout.

– Typically a using namespace std; statement suffices.

#include <iostream>

int main()
{
std::cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 10 / 62

Outline

• Preparations

– Preprocessors and namespaces

– Basic data types

• Selection

• Repetition

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 11 / 62

Data types, literals, and variables

• Recall that in C++, each variable must be have its data type.

– It tells the system how to allocate memory spaces and how to interpret
those 0s and 1s stored there.

– It will also determine how operations are performed on the variable.

• Here we introduce basic (or built-in or primitive) data types.

– Those provided as part of the C++ standard.

– We will define our own data types later in this semester.

• Before we start, let’s know distinguish literals from variables.

– Literals: items whose contents are fixed, e.g., 3, 8.5, and “Hello world”.

– Variables: items whose values may change.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 12 / 62

Basic data types

• The ten C++ basic data types:

– Basic type names are all keywords.

– Number of bytes are compiler-dependent.

Category Type Bytes Type Bytes

Integers

bool 1 long 4

char 1 unsigned int 4

int 4 unsigned short 2

short 2 unsigned long 4

Fractional
numbers

float 4 double 8

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 13 / 62

int

• intmeans an integer.

• In Dev-C++ 5.4:

– An integer uses 4 bytes to store from –231 to 231 – 1.

– unsigned (4 bytes): from 0 to 232 – 1.

– short (2 bytes): from –32768 to 32767.

– long: the same as int.

• The C++ standard only requires a compiler to ensure that:

– The space for a long variable ≥ the space for an int one.

– The space for an int variable ≥ the space for a short one.

• short and long just create integers with different “lengths”.

– In most information systems this is not an issue.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 14 / 62

Limits of int

• The limits of C++ basic data types are stored in <climits>.

• For information, see, e.g., http://www.cplusplus.com/reference/climits/.

#include <iostream>
#include <climits>
using namespace std;

int main()
{
cout << INT_MIN << " " << INT_MAX << "\n";

return 0;
}

Preparations Selection Repetition

http://www.cplusplus.com/reference/climits/

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 15 / 62

sizeof

• We may use the sizeof operator to know the size of a variable or a type.

cout << "int " << sizeof(int) << "\n";
cout << "char " << sizeof(char) << "\n";
cout << "bool " << sizeof(bool) << "\n";

short s = 0;
cout << "short int " << sizeof(s) << "\n";
long l = 0;
cout << "long int " << sizeof(l) << "\n";

cout << "unsigned short int " << sizeof(unsigned short) << "\n";
cout << "unsigned int " << sizeof(unsigned) << "\n";
cout << "unsigned long int " << sizeof(unsigned long) << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 16 / 62

Overflow

• Be aware of overflow!

int i = 0;
short sGood = 32765;

while (i < 10)
{
short sBad = sGood + i;
cout << sGood + i << " " << sBad << "\n";
i = i + 1;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 17 / 62

Overflow

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 18 / 62

char

• charmeans a character.

– Use one byte (0 to 255) to store English characters, numbers, and symbols.

– Cannot store, e.g, Chinese characters.

• It is also an “integer”!

– These characters are encoded with the ASCII code in most PCs.

– ASCII = American Standard Code for Information Interchange.

– See the ASCII code mapping in your textbook.

– Some encoding:

Character A B Z a b z 0 1 9

Code 65 66 90 97 98 122 48 49 57

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 19 / 62

Literals in char type

• Use single quotation marks to make your char literal.

– char c = 'c';

– char c = 99;

• Some wrong ways of marking a character:

– Wrong: char c = "c";

– Wrong: char c = 'cc';

• More about charwill be discussed when we talk about casting and strings.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 20 / 62

float and double

• float and double are used to declare fractional numbers.

– Can be 5.0, -6.2, etc.

– Can be 16.25e2 (1.625 * 103 or 1625), 7.33e-3 (0.00733), etc.

• They follow the IEEE floating point standards.

– float uses 4 bytes to record values between 1.4 * 10–45 and 3.4 * 1038.

– doubleuses 8 bytes to record values between 4.9 * 10–324 and 1.8 * 10308.

• The compiler used in Dev-C++ (and some other compilers) offers long
double as a 16 bytes floating point data type.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 21 / 62

bool

• A bool variable uses 1 byte to record one Boolean

value: true or false.

– Two literals: true and false.

– 7 bits are wasted.

– All non-zero values are treated as true.

• bool variables play an important role in control

statements!

bool b = 0;
cout << b << "\n";

b = 1;
cout << b << "\n";

b = 10;
cout << b << "\n";

b = 0.1;
cout << b << "\n";

b = -1;
cout << b << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 22 / 62

Outline

• Preparations

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

• Scope of variables

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 23 / 62

• Last time we studied one kind of selection statement,
the if statement.

– condition returns a bool value.

– { }may be dropped if there is only one statement.

• In many cases, we hope that conditional on whether the
condition is true or false, we do different sets of
statements.

• This is done with the if-else statement.

– Do statements 1 if condition returns true.

– Do statements 2 if condition returns false.

• An elsemust have an associated if!

The if statement

if (condition)
{
statements

}

if(condition)
{

statements 1
}
else
{

statements 2
}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 24 / 62

• The income tax rate often varies according to the level of income.

– E.g., 2% for income below $10000 but 8% for the part above $10000.

• How to write a program to calculate the amount of income tax based on an input
amount of income?

Example of the if-else statement

double income = 0, tax = 0;

cout << "Please enter the taxable income: ";
cin >> income;

if (income <= 10000)
tax = 0.02 * income;

else
tax = 0.08 * (income - 10000) + 10000 * 0.02;

cout << "Tax amount: $" << tax << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 25 / 62

• An if or an if-else statement can be nested in
an if block.

– In this example, if both conditions are true,
statements A will be executed.

– If condition 1 is true but condition 2 is false,
statements B will be executed.

– If condition 1 is false, statements C will be
executed.

• An if or an if-else statement can be nested in an
else block.

• We may do this for any level of if or if-else.

Nested if-else statement

if(condition 1)
{
if(condition 2)
{
statements A

}
else
{
statements B

}
}
else
{
statements C

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 26 / 62

Dangling if-else

• What does this mean?

• In the current C++ standard,
it is actually:

if(a == 10)
if(b == 10)
cout << "a and b are both ten.\n";

else
cout << "a is not ten.\n";

if(a == 10)
{
if(b == 10)
cout << "a and b are both ten.\n";

else
cout << "a is not ten.\n";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 27 / 62

Dangling if-else

• When we drop { }, our programs may be grammatically ambiguous.

– In the field of Programming Languages, it is called the dangling problem.

• To handle this, C++ defines that “one else will be paired to the closest if that
has not been paired with an else.”

• Good programming style:

– Drop { } only when you know what you are doing.

– Align your { }.

– Indent your codes properly.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 28 / 62

The else-if statement

• An if-else statement allows us to respond

to a binary condition.

• When we want to respond to a ternary
condition, we may put an if-else
statement in an else block:

• For this situation, people typically drop { }
and put the second if behind else to create
an else-if statement:

if (a < 10)
cout << "a < 10.";

else
{
if (a > 10)
cout << "a > 10.";

else
cout << "a == 10.";

}

if (a < 10)
cout << "a < 10.";

else if (a > 10)
cout << "a > 10.";

else
cout << "a == 10.";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 29 / 62

The else-if statement

• An else-if statement is generated by using
two nested if-else statements.

• It is logically fine if we do not use else-if.

• However, if we want to use respond to more
than three conditions, using else-if greatly

enhance the readability of our program.

• Another selection statement, switch-case,

is (sometimes) more appropriate for a
condition that has many realizations and will
be introduced later.

if (month == 1)
cout << "31";

else if(month == 2)
cout << "28";

else if(month == 3)
cout << "31";

else if(month == 4)
cout << "30";

else if(month == 5)
cout << "31";

// ...
else if(month == 11)
cout << "30";

else
cout << "31";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 30 / 62

Outline

• Preparations

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

• Scope of variables

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 31 / 62

Logic operators

• In some cases, the condition for an if statement is complicated.

– If I love a girl and she also loves me, we will fall in love.

– If I love a girl but she does not love me, my heart will be broken.

• It will make our life easier to use logic operators to combine multiple
conditions into one condition.

• We have three logic operators:

– &&: and.

– ||: or.

– !: not.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 32 / 62

Logic operators: and

• The “and” operator operates on two conditions.

– Each condition is an operand.

• It returns true if both conditions are true. Otherwise it returns false.

– (3 > 2) && (2 > 3) returns false.

– (3 > 2) && (2 > 1) returns true.

• When we use it in an if statement, the grammar is:

if(condition 1 && condition 2)
{

statements
}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 33 / 62

Logic operators: and

• An “and” operation can replace a nested if statement.

– The nested if statement

is equivalent to

if (a > 10)
{
if (b > 10)
cout << "a is between 10 and 20;";

}

if (a > 10 && b > 10)
cout << "a is between 10 and 20;";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 34 / 62

Logic operators: or

• The “or” operator returns true if at least one of the two conditions is true.
Otherwise it returns false.

– (3 > 2) || (2 > 3) returns true.

– (3 < 2) || (2 < 1) returns false.

• When the or operator is used in an if statement, the grammar is

If(condition 1 || condition 2)
{
statements

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 35 / 62

• The “not” operator returns the opposite of the condition.

– !(2 > 3) returns true.

– !(2 > 1) returns false.

• It is used when we have statements only in the else block:

– The following two programs are equivalent:

Logic operator: not

if(condition)
;

else
{
statements

}

if(!condition)
{
statements;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 36 / 62

Associativity and precedence

• The && and || operators both associate the

two conditions from left to right.

• It is possible that the second condition is not
evaluated at all.

– If evaluating the first one is enough.

• What will be the outputs?

• There is a precedence rule for operators.

– You may find the rule in the textbook.

– You do not need to memorize them: Just
use parentheses.

int a = 0, b = 0;

if ((a > 10) && (b = 1))
;

cout << b << "\n";

if ((a < 10) || (b = 1))
;

cout << b << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 37 / 62

Outline

• Preparations

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 38 / 62

• The second way of implementing a selection is
to use a switch-case statement.

• It is particularly useful for responding to
multiple values of a single operation.

• For the operation:

– It can contain only a single operand.

– It must return an integer (int, bool,
char, etc.).

The switch-case statement

switch (operation)
{
case value 1:
statements
break;

case value 2:
statements
break;

...
default:
statements
break;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 39 / 62

• After each case, there is a value.

– If the returned value of the operation
equals that value, those statements in the
case block will be executed.

– No curly brackets are needed for blocks.

– A colon is needed after the value.

• A breakmarks the end of a block.

– The break of the last section is optional.

• Restrictions on those values:

– Cannot be (non-constant) variables.

– Must be different integers.

The switch-case statement

switch (operation)
{
case value 1:
statements
break;

case value 2:
statements
break;

...
default:
statements
break;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 40 / 62

• Dropping a break may be useful:• What will happen if we enter 10?

The break statement

int a;
cin >> a;

switch(a)
{
case 10:
cout << "a is ten.";

case 20:
cout << "a is twenty.";
break;

}

char a;
cin >> a;

switch(a)
{
case 'c':
case 'C':
cout << "This is c or C.";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 41 / 62

The default block

• The default block will be executed if
no case value matches the operation’s

return value.

• You may add a break at the end of
default or not. It does not matter.

int a;
cin >> a;

switch(a)
{
case 10:
cout << "a is ten.";
break;

case 20:
cout << "a is twenty.";
break;

default:
cout << a << "\n";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 42 / 62

Outline

• Preparations

• Selection

• Repetition

– while and do-while

– for

– Something else

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 43 / 62

The while statement

• In many cases, we want to repeatedly execute a set of codes.

• Last time we studied one repetition statement, the while statement.

• What do these programs do?

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

char a = 0;
// do something
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
// do something
cout << "Exit? ";
cin >> a;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 44 / 62

Modifying loop counters

• Very often we need to add 1 to or subtract 1 from a loop counter.

• Using the unary increment/decrement operator ++/-- can be more convenient.

• Binary self-assigning operators (e.g., +=) sometimes help.

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i++;

}

cout << sum << "\n";

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i += 1;

}

cout << sum << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 45 / 62

Increment/decrement operators

• In C++, the increment and decrement operators are specific:

– For modifying i, i++ is the same as i = i + 1.

– For modifying i, i–– is the same as i = i – 1.

• They can be applied on all basic data types.

– But we should only apply them on integers.

• Typically using them is faster than using the corresponding addition/subtraction
and assignment operation.

int i = 10;
i++; // i becomes 11
i--; // i becomes 10

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 46 / 62

Increment/decrement operators

• Both can be put at the left or the right of the operand.

– This changes the order of related operations.

– i++: returns the value of i, and then increment i.

– ++i: increments i, and then returns the incremented value of i.

• What are the values of a and b are these statements?

• i-- and --iwork in the same way.

• So is i = i + 1 equivalent to i++ or ++i?

• Do not make your program hard to understand!

– What is a = b+++++c?

a = 5; b = a++; a = 5; b = ++a;

c++;
a = b + c;
b++;

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 47 / 62

Self-assigning operations

• In many cases, an assignment operation is self-assigning.

– a = a + b, a = a - 20, etc.

• For each of the five arithmetic operators +, -, *, /, and %, there is a

corresponding self-assignment operator.

– a += b means a = a + b.

– a *= b - 2 means a = a * (b – 2) (not a = a * b – 2).

• Typically a += b is faster than a = a + b, etc.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 48 / 62

• Recall that we validated a user input with a
while statement:

• One drawback of this program is that a set of
same codes must be written twice.

– Inconsistency may then arise.

• To avoid such a situation, we may use a do-
while statement.

The do-while statement

char a = 0;
// do something
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
// do something
cout << "Exit? ";
cin >> a;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 49 / 62

• The grammar:

• The revision of the previous program:

• In any case, statements in a do-while

loop must be executed at least once.

• The semicolon is needed.

The do-while statement

do
{
statements

} while (operation);

char a = 0;

do
{
// do something
cout << "Exit? ";
cin >> a;

} while (a != 'y' && a != 'Y');

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 50 / 62

Outline

• Preparations

• Selection

• Repetition

– while and do-while

– for

– Something else

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 51 / 62

The for statement

• Another way of implementing a loop is to use a for

statement.

– The curly brackets can be dropped if there is only
one statement.

for (init; cond; some)
{
statements

}

True
init cond statements some

Start End

False

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 52 / 62

The for statement

• You need those two “;” in the ().

• The typical way of using a for statement is:

– init: Initialize a counter variable here.

– cond: Set up the condition on the counter variable for the loop to continue.

– some: Modify (mostly increment or decrement) the counter variable.

– statements: The things that we really want to do.

for (init; cond; some)
{
statements

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 53 / 62

• Let’s calculate the sum of 1 + 2 + … + 100:

– We used while. How about for?

• To use for:

– We declare and initialize the counter
variable i: int i = 1.

– We check the loop condition: i <= 100.

– We run the statement: sum = sum + i;.

– We then increment the counter: i++. i
becomes 2.

– Then we go back to check the condition,
and so on, and so on.

for vs. while

int sum = 0;
for (int i = 1; i <= 100; i++)
sum = sum + i;

cout << sum;

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 54 / 62

Multi-counter for loops

• Inside one for statement:

– You may initialize multiple counters at the same time.

– You may also check multiple counters at the same time.

– You may also modify multiple counters at the same time.

• Use “,” to separate operations on multiple counters.

• If any of the conditions is false, the loop will be terminated.

• Try to find alternatives before you use it.

for(int i = 0, j = 0; i < 10, j > -5; i++, j--)
cout << i << " " << j << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 55 / 62

Good programming style

• When you need to execute a loop for a fixed number of iterations, use a for

statement with a counter declared only for the loop.

– This also applies if you know the maximum number of iterations.

– This avoids potential conflicts on variable names.

– See “scope of variables” below.

• Use the loop that makes your program the most readable.

• Typically only the counter variable enters the () of a for statement.

• You may use double or float for a counter, but this is not recommended.

– Use integer only!

• Drop { } only when you know what you are doing.

• Align your { }. Indent your codes properly.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 56 / 62

Scope of variables

• A variable has its scope
(or life cycle).

– Where it is “alive”
and can be accessed.

• For all the variables you
have seen so far, they
live only in the block
in which they are
declared.

if (...)
{
int a = 10;

}
a = 20; // error

while (...)
{
int a = 10;

}
a = 20; // error

for (int i = 0; i < 10; i++)
{
;

}
i = 20; // error

int i;
for (i = 0; i < 10; i++)
{
;

}
i = 20; // ok!

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 57 / 62

Scope of variables

• Two variables declared in the same level
cannot have the same variable name.

– One main reason to use for.

• However, this is allowed if one is declared
in an inner block.

– In the inner block, after the same
variable name is used to declare a new
variable, it “replaces” the original one.

– However, its life ends when the inner
block ends.

int a = 0;
if (a == 0)
{
cout << a << "\n"; // ?
int a = 10;
cout << a << "\n"; // ?

}
cout << a << "\n"; // ?

for (int i = 0; ...; ...)
{
...

}
for (int i = 0; ...; ...)
{
...

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 58 / 62

Outline

• Preparations

• Selection

• Repetition

– while and do-while

– for

– Something else

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 59 / 62

• Like the selection process, loops can also be nested.

– Outer loop, inner loop, most inner loop, etc.

• Nested loops are not always necessary, but they can be helpful.

– Particularly when we need to handle a multi-dimensional case.

• E.g., write a program to output some integer points on an (x, y)-plane like this:

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

• This can still be done with only
one level of loop. but using a
nested loop is much easier.

Nested loops

for (int x = 1; x <= 3; x++)
{
for (int y = 1; y <= 3; y++)
cout << "(" << x << ", " << y << ") ";

cout << " ";
}
// where to output a new line character?

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 60 / 62

Infinite loops

• An infinite loop is a loop that does not terminate.

• Usually an infinite loop is a logical error made by the programmer.

– When it happens, check your program.

• Sometimes we create it in purpose.

– E.g., we may wait for an “exit” input and then leave the loop with a break.

• When your program does not stop, press <Ctrl + C>.

int a = 0;
while (a >= 0)
a++;

while (true)
//...

for (; ;)
//...

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 61 / 62

• When we implement a repetition process, sometimes we need to further change
the flow of execution of the loop.

• A break statement brings us to exit the loop immediately.

• When continue is executed, statements after it in the loop are skipped.

– The looping condition will be checked immediately.

– If it is satisfied, the loop starts from the beginning again.

• How to write a program to print out all integers from 1 to 100 except multiples
of 10?

break and continue

for (int a = 1; a <= 100; a++)
{
if (a % 10 == 0)
continue;

cout << a << " ";
}

for (int a = 1; a <= 100; a++)
{
if(a % 10 != 0)
cout << a << " ";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Control Statements 62 / 62

break and continue

• The effect of break and continue is just

on the current level.

– If a break or continue is used in an

inner loop, the execution jumps to the
outer loop.

• What will be printed out at the end of this
program?

int a = 0, b = 0;
while(a <= 10)
{
while(b <= 10)
{
if(b == 5)
break;

cout << a * b << "\n";
b++;

}
a++;

}
cout << a << "\n"; // ?

Preparations Selection Repetition

