
IM 1003: Programming Design

Arrays

Ling-Chieh Kung

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 1 / 55

Ling-Chieh Kung

Department of Information Management

National Taiwan University

March 3, 2014

Variables and arrays

• We know each variable must have a type.

• So far all variables we declared are of basic data types.

• There are other types:

– Arrays.

– Pointers.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 2 / 55

– Self-defined data types (e.g., classes).

• Today we introduce arrays.

– A collection of variables of the same type.

– An array variable is of an array type.

Outline

• More about variables

– Constant variables

– Casting among basic data types

• Arrays

• C strings: character arrays

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 3 / 55

Constant variables

• Sometimes we want to use a variable to store a particular value.

– In a program doing calculations regarding circles, the value of π may be
used repeatedly.

– We do not want to write many 3.14 throughout the program! Why?

– We may declare pi = 3.14 once and then use pi repeatedly.

symbolic constant

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 4 / 55

• In this case, this variable is actually a symbolic constant.

– We want to prevent it from being modified.

Constant variables

• A constant is one kind of variables.

• To declare a constant, use the key word const:

– const int a = 100;

– All further assignment operations on a constant generate compilation errors.

– That is why we must initialize a constant.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 5 / 55

• It is suggested to use capital characters and underlines to name constants.
This distinguishes them from usual variables.

– const double PI = 3.1416;

– const int MAX_LEVEL = 5;

– Some people use lowercase characters and underlines.

Casting

• Variables are containers.

• Variables of different types are containers of different sizes/shapes.

– long≧ int≧ short.

– “Shapes” of int and float are different (though sizes are identical).

• A big container may store a small item. A big item must be “cut” to be stored in

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 6 / 55

a small container.

– So are variables of different types.

short s = 100;
int i = s; // 100
i = 100000;
s = i; // -31072

double d = 5; // d = 5.0
int s = 5.5; // s = 5

Casting

• Changing the type of a variable or literal is called casting.

• There are two kinds of casting:

– Implicit casting: from a small type to a large type.

– Explicit casting: from a large type to a small type.

• When implicit casting occurs, there is no value of precision loss.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 7 / 55

– The system does that automatically.

– The value of that variable or literal does not change.

– There is no need for a programmer to indicate how to implicitly cast one
small type to a large type.

• To cast a large type to a small type, a programmer is responsible for indicating
how to do it explicitly.

Explicit casting

• Suppose we want to store 5.6 to an integer:

– int a = 5.6; is not good.

– int a = static_cast<int>(5.6); is better.

• To cast basic data types, we use static_cast:

static_cast<type>(expression)

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 8 / 55

– When a float or double is cast to an integer value (and there is no value loss),
the fractional part is truncated.

• In the example above, both statements makes a equal 5.

– Then why bothering?

static_cast<type>(expression)

Explicit casting

• Explicit casting is to indicate the way of casting we want.

– For basic types, there is only one way to cast a large type to a small type.

– For more complicated types, however, there may be multiple.

• There are four different explicit casting operators.

– static_cast, dynamic_cast, reindivter_cast, and const_cast.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 9 / 55

– For basic data types, static_cast is enough.

• By explicitly indicating how to cast:

– This is to make sure that, at the run time, the program runs as we expect.

– This is also to notify other programmers (or the future ourselves).

• Explicit casting also allows for a temporary change of types (see below).

Good programming style

• There is an old way of explicit casting:

– For example, int a = (int) 5.6; .

• Try to avoid it!

(type) expression

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 10 / 55

– This operation includes all four possibilities, and we have no idea which one
will be performed at the run time.

• If possible, try to modify your variable declaration to avoid casting.

Casting for division

• Let’s try this program:

• The division operator returns an integer if
both operands (numerator and denominator)
are integers.

• How to get our desired results?

– If allowed, we may change the data

int d1 = 10;
int d2 = 3;
cout << d1 / d2 << "\n";

double d3 = 10;
int d4 = 3;

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 11 / 55

– If allowed, we may change the data
types of the operands.

– If not allowed, we may cast the
operands temporarily.

int d4 = 3;
cout << d3 / d4 << "\n";

int d5 = 10;
double d6 = 3;
cout << d5 / d6 << "\n";

Casting for division

• Which one works?

int d1 = 10;
int d2 = 3;
cout << static_cast<double>(d1 / d2);

int d1 = 10;

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 12 / 55

• Casting can be a big issue when we work with nonbasic data types.

• At this moment, just be aware of fractional and integer values.

int d1 = 10;
int d2 = 3;
cout << static_cast<double>(d1) / d2;

Outline

• More about variables

• Arrays

– Single-dimensional arrays

– Multi-dimensional arrays

• C strings: character arrays

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 13 / 55

Set of similar variables

• Suppose we want to write a program to store five students’ scores.

• We may need to declare 5 variables.

– int score1, score2, score3, score4, score5;

• What if we have 500 students? How to declare 500 variables?

• Even if we have only 5 variables with very similar names, we are unable to

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 14 / 55

write a loop to output all of them.

for (int i = 0; i < 5; i++)
{
cout << score1; // and then?

}

Why arrays?

• An array is a collection of variables with the same type.

• To declare five integer variables for scores, we may write:

– These variables are declared with the same array name (score).

int score[5];

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 15 / 55

– They are distinguished by their indices.

• An array is also a type: A nonbasic data type.

– The type of score is “a length-5 integer array”.

cout << score[2];

An array is a type

• Arrays are often used with loops.

– Quite often the loop counter is used
as the array index.

type

int score[5];
for (int i = 0; i < 5; i++)
cin >> score[i];

for (int i = 0; i < 5; i++)
cout << score[i] << " ";

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 16 / 55

• An array is also a (nonbasic) type.

– The type of score is “a integer

array” (of length 5).

– What is this?

• We will go back to this when we introduce pointers.

– For now, just treat an array as a sequence of variables.

cout << score;

Array declaration

• The grammar for declaring an array is

• E.g., int score[5];

– This is an integer array with five elements (the
array length/size

data type array name[number of elements];

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Address Identifier Value

0x20c648 score[0] ?

0x20c64c score[1] ?

0x20c650 score[2] ?

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 17 / 55

array length/size is 5).

– Each array element itself is a variable.

– The index starts at 0! They are score[0],
score[1], …, and score[4].

• It occupies 4 bytes * 5 = 20 continuous bytes.

– Try cout << sizeof(score);!

0x20c654 score[3] ?

0x20c658 score[4] ?

Memory

An example

• We have written a program for 5 scores: int score[5];
for (int i = 0; i < 5; i++)
cin >> score[i];

for (int i = 0; i < 5; i++)
cout << score[i] << " ";

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 18 / 55

• If we have 500 students: int score[500];
for (int i = 0; i < 500; i++)
cin >> score[i];

for (int i = 0; i < 500; i++)
cout << score[i] << " ";

Array initialization

• Arrays are not initialized automatically.

int array[100];

for (int i = 0; i < 100; i++)
{
cout << array[i] << " ";

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 19 / 55

cout << array[i] << " ";
if (i % 10 == 9)
cout << "\n";

}

Array initialization

• Various ways of initializing an array:

– int dayInMonth[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30,
31, 30, 31};

– int dayInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31}; (size of dayInMonthwill be 12)

– int dayInMonth[12] = {31, 28, 31}; (nine 0s)

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 20 / 55

– int dayInMonth[12] = {31, 28, 31}; (nine 0s)

– int dayInMonth[3] = {1, 2, 3, 4}; (error!)

• To initialize all elements to 0:

– int score[500] = {0}; (500 0s)

The boundary of an array

• In C++, it is allowed for one to “go
outside an array”.

– No compilation error!

– May or may not generate a run
time error: If our program try to
access a memory space allocated

int array[100] = {0};

for (int i = 0; i < 500; i++)
{
cout << array[i] << " ";
if (i % 10 == 9)
cout << "\n";

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 21 / 55

access a memory space allocated
to another program, the operating
system will terminate our program.

– The result is unpredictable.

• A programmer must be aware of array
bounds by herself/himself.

cout << "\n";
}

Memory allocation for arrays

• So what happens when we declare or access
an array?

• When we declare an array:

int score[5];

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Address Identifier Value

0x20c648 score ?

0x20c64c ?

0x20c650 ?

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 22 / 55

– The system allocates memory spaces
accordingly to the type and length.

– The array variable indicates the
beginning address of the space.

cout << score; // 0x20c648

0x20c654 ?

0x20c658 ?

Memory

Memory indexing for arrays

• When we access an array element:

– The array index indicates the amount of
offset for accessing a memory space.

– score[i]means to take the variable
stored at “starting from score, offset by
i units”.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Address Identifier Value

0x20c648 score ?

0x20c64c ?

0x20c650 ?

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 23 / 55

i units”.

• So score[i] is always accepted by the
compiler for any value of i.

– Always be careful when using arrays!

cout << score + 2; // 0x20c650

0x20c654 ?

0x20c658 ?

Memory

• Sometimes we are given an array whose size is not known by us.

• One way of finding the array length is to use sizeof.

– It returns the total number of bytes allocated to that array.

• Suppose the array is named score, its length equals

sizeof(score) / sizeof(score[0]);

Finding the array length

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 24 / 55

– sizeof(score) is the total number of bytes allocated to the array.

– sizeof(score[0]) is the number of bytes allocated to the first element.

sizeof(score) / sizeof(score[0]);

Finding the array length

• Example: Let’s print out all elements in an array:

int array[] = {1, 2, 3};
int length = sizeof(array) / sizeof(array[0]);
for(int i = 0; i < length; i++)
cout << array[i] << " ";

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 25 / 55

• When using sizeof to count the length of, e.g., an integer array:

– Use sizeof(a) / sizeof(a[0]).

– Do not use sizeof(a) / sizeof(int).

• Why?

cout << array[i] << " ";

Example: finding the maximum

• How to find the maximum among many numbers?

• Suppose we want to write a program that:

– Asks the user to input 10 numbers.

– Once 10 numbers are input, prints out the maximum.

float value[10] = {0};

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 26 / 55

float value[10] = {0};
for (int i = 0; i < 10; i++)
cin >> value[i];

// and then?

Example: finding the maximum

• Now the task is to find the maximum in value.

• In many cases, we write an algorithm to complete a task.

– An algorithm is a step-by-step procedure that completes a given task.

• When designing an algorithm, we typically write pseudocodes first.

– A description of steps in words organized in a program structure.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 27 / 55

– To ignore the details of implementations.

• How to find the maximum?

– Compare the first two and find the larger one.

– Use it to be compare with the third one.

– And so on.

Example: finding the maximum

• One pseudocode for finding the
maximum in a set is:

Given a vector A of n numbers:
for i from 0 to n – 1

find the larger between Ai and Ai + 1

put the larger one at Ai + 1

• Implementation:

// value: a size-10 float array
for (int i = 0; i < 9; i++)
{
if (value[i] > value [i + 1])

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 28 / 55

• What some drawbacks of this
implementation (or algorithm)?

put the larger one at Ai + 1

output An

if (value[i] > value [i + 1])
{
float temp = value[i + 1];
value[i + 1] = value[i];
value[i] = temp;

}
}
cout << value[9];

Example: finding the maximum

• Let’s record the current maximum at some other place:

float value[10] = {0};
for (int i = 0; i < 10; i++)
cin >> value[i];

float max = value[0];

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 29 / 55

float max = value[0];
for (int i = 1; i < 10; i++)
{
if (value[i] > max)
max = value[i];

}
cout << max;

Good programming style

• It is suggested to declare a
constant and use it to:

– Declare an array.

– Control any loop that
traverse the array.

• Why?

const int VALUE_LEN = 10;

float value[VALUE_LEN] = {0};
for (int i = 0; i < VALUE_LEN; i++)
cin >> value[i];

float max = value[0];

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 30 / 55

• Why? float max = value[0];
for (int i = 1; i < VALUE_LEN; i++)
{
if (value[i] > max)
max = value[i];

}
cout << max;

Things you cannot (should not) do

• Suppose you have two arrays array1 and array2.

– Even if they have the same length and their elements have the same type,
you cannot write array1 = array2. This results in a syntax error.

– You also cannot compare two arrays with ==, >, <, etc.

• Why?

– array1 and array2 are just two memory addresses!

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 31 / 55

– array1 and array2 are just two memory addresses!

• To copy one array to another array, use a loop to copy each element one by one.

– For comparisons it is the same.

Things you cannot (should not) do

• Although allowed in Dev-C++, you should not declare an array with its length
being a nonconstant variable.

int x = 0;
cin >> x;
int array[x]; // very bad!

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 32 / 55

– This results in a syntax error in some compilers.

– In ANSI C++, the length of an array must be fixed when it is declared.

– Arrays with dynamic sizes will be discussed later.

• The index of an array variable should be an integer.

– Some compiler allows a fractional index (casting is done automatically).

Outline

• More about variables

• Arrays

– Single-dimensional arrays

– Multi-dimensional arrays

• C strings: character arrays

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 33 / 55

Two-dimensional arrays

• While a one-dimensional array is like a vector, a two-dimensional array is like a
matrix or table.

• Intuitively, a two-dimensional array is composed by rows and columns.

– To declare a two-dimensional array, we should specify the numbers of rows
and columns.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 34 / 55

• As an example, let’s declare an array with 3 rows and 7 columns.

data type array name[rows][columns];

double score[3][7];

Two-dimensional arrays

• double score[3][7];

0 1 2 3 4 5 6

0 [0][0] [0][1] [0][2]

1 [1][0] [x][y]

2 [2][0]

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 35 / 55

– score[0][0] is the 1st and score[0][1] is the 2nd. What are x and y?

• We may initialize a two-dimensional array as follows:

– int score[2][3] = {{4, 5, 6}, {7, 8, 9}};

– int score[2][3] = {4, 5, 6, 7, 8, 9}; // 2 can be omitted.

2 [2][0]

Example: matrix addition

• Let’s write a program to do matrix addition.

int a[2][3] = {{1, 2, 3}, {1, 2, 3}};
int b[2][3] = {{4, 5, 6}, {7, 8, 9}};
int c[2][3] = {0};

for (int i = 0; i < 2; i++)

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 36 / 55

for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 3; j++)
c[i][j] = a[i][j] + b[i][j];

}

Example: tic-tac-toe

• Let’s write a program to detect the winner of a tic-tac-toe game:

int a[3][3] = {{1, 0, 1}, {1, 1, 0}, {0, 0, 1}};

for (int i = 0; i < 2; i++)
{
if (a[i][0] == a[i][1] && a[i][1] == a[i][2])

× ○ ×

× × ○

○ ○ ×

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 37 / 55

if (a[i][0] == a[i][1] && a[i][1] == a[i][2])
{
cout << a[i][0] << endl;
break;

}
}
// then check for columns and diagonals

Embedded one-dimensional arrays

• Two-dimensional arrays are not actually rows and columns.

• A two-dimensional array is actually several one-dimensional arrays.

0 1 2 3 4 5 6

[0][0] [0][1] [0][2]score[0]

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 38 / 55

• Try this:

[1][0]

[2][0]

score[1]

score[2]

int a[2][3];
cout << a << " " << a[0] << " " << a[1] << endl;

Embedded one-dimensional arrays

• int a[2][3];

– a[0][0] is the first element.

– a[0][1] is the second element.

– a[1][0] is the fourth element.

• Two dimensional arrays are stored linearly.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Address Identifier Value

0x20c648 a[0] ?

0x20c64c ?

0x20c650 ?

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 39 / 55

– And still consecutively.

• Try this:

int a[2][3];
cout << a << " " << a[0] << endl;
cout << a[1] << " " << a + 1 << endl;
cout << sizeof(a) << " " << sizeof(a[0]) << endl;

0x20c654 a[1] ?

0x20c658 ?

0x20c65c ?

Memory

Embedded one-dimensional arrays

• So for a two dimensional array score:

– score[0] is the ____th one-dimensional array.

– score[0][j] is the ____th element of the ____th one-dimensional array.

– score[i] is the ____th one-dimensional array.

• Which description is more accurate?

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 40 / 55

– There is an array having three rows and seven columns.

– There is an array having three rows, each having seven elements.

• All these one-dimensional arrays must be of the same length.

– Two-dimensional arrays with various row lengths can be built with pointers.

Multi-dimensional arrays

• We may have arrays with even higher dimensions.

– char threeDim[3][4][5];

– Int eightDim[3][4][5][6][1][7][4][8];

• Difficult to imagine and use.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 41 / 55

Outline

• More about variables

• Arrays

• C strings: character arrays

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 42 / 55

Strings

• In many applications, we need some ways to handle strings.

• E.g., in an address book application, if we do not have strings:

– We cannot store names.

– We cannot store phone numbers.

– We cannot store addresses.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 43 / 55

• Strings can be implemented in two ways:

– C strings as character arrays.

– C++ strings as objects.

• Today we will introduce C strings.

C strings as character arrays

• A C string is a character array.

• We have already used string with cout:

– "Hello world" is a string.

cout << "Hello world";

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 44 / 55

• A string is contained in a pair of double quotation marks.

– A character is contained in a pair of single quotation marks.

C strings v.s. other arrays

• C strings are nothing but a character arrays.

• However, character arrays are “special”.

• For example:

int array[10];
cin >> array;

char array[10];
cin >> array;

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 45 / 55

– While the first one results in a compilation error, the second one can run!

cin >> array;
return 0;

cin >> array;
return 0;

C strings v.s. other arrays

• For an array A, if we do cin >> A:

– If A is of other types, this is not allowed.

– But for a character array, this allows us to input the string.

char str[10];
cin >> str; // if we type "abcde"

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 46 / 55

cin >> str; // if we type "abcde"
cout << str[0]; // 'a'
cout << str[2]; // 'c’

C strings v.s. other arrays

• For an array A, if we do cout << A:

– If A is of other types, this will print out it memory address.

– But for a character array, this prints out the whole string (some exceptions
will be discussed later).

char array[10] = {'a', 'b', 'c'};

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 47 / 55

char array[10] = {'a', 'b', 'c'};
cout << array; // "abc"
return 0;

Input/output of a C string

• Because it is too often for a program to input/output a string, the C++ standard
implements << and >> for character arrays in a special way.

– << and >> are operators.

– An operator can do different things according to the input data types.

– This is called operator overloading and will be discussed in this semester.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 48 / 55

• The implementation of C string I/O needs to be investigated in more details.

• Before that, let’s see how to declare a C string.

C string declaration and initialization

• A C string is declared as a character array.

– char s[100];

• A C string may be initialized with a double quotation.

– char s[100] = "abc";

• In this case, a null character \0 is appended at the end automatically.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 49 / 55

– \0 is an escape sequence. It marks the end of a string.

– The length of the string stored in s is 3 + 1 (\0).

• When you declare a character array of length n, you can store a string of length
at most n – 1.

Understanding the null character

• The null character is \0, not \o or \O.

• From the system’s perspective, a null character marks the end of a string.

char a[100] = "abcde FGH";
cout << a << endl;// abcde FGH
char b[100] = "abcde\0 FGH";

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 50 / 55

• One may also initialize a C string by assigning multiple characters.

– char s[100] = {'a', 'b', 'c'};

– No null character will be appended.

char b[100] = "abcde\0 FGH";
cout << b << endl; // abcde

String assignments

• Assignments with double quotations are allowed only for initialization.

– char s[100];

s = "this is a string"; // compilation error!

• One may assign values to a string by assigning characters.

– s[0] = 'A'; s[1] = 'B'; s[2] = 'C';

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 51 / 55

• One may assign values by
cin >>.

– cin >> s;

– A null character will be
appended.

char c[100];
cin >> c; // "123456789"
cin >> c; // "abcde";
cout << c << endl; // "abcde"
c[5] = '*';
cout << c << endl; // "abcde*789"

Two strange cases

• C++ does not check array boundary!

• We may or may not touch those memory spaces used by other

char a[5];
cin >> a; // "123456789"
cout << a; // "123456789" or an error

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 52 / 55

programs/variables.

– If a protected space is touched, an error occurs and our program is shutdown.

– If not, cout << prints out the whole string until the end of a string, which
is marked by a \0.

Two strange cases

• Is it because a white space is treated as an end of C strings?

• No!

char a1[100];
cin >> a1; // "this is a string"
cout << a1; // "this"

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 53 / 55

• Then why?

char a2[100] = {'a', 'b', ' ', 'c', '\0', 'e'};
cout << a2; // ab c

cin >> vs. cin.getline()

• When cin >> reads a white space, it treats that as the end of input and thus only

“this” is stored into the array.

– The same thing happens for a new line or a tab.

• To input a string with white spaces, use cin.getline().

– Treat is as a function defined in <iostream>.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 54 / 55

– It treats only end of line as the end of input.

char a[100];
cin.getline(a, 100); // "this is a string"
cout << a << endl; // "this is a string"

Useful functions for C strings

• Look at your textbook or websites to find some useful function.

• In <cstring>:

– strlen(), strcat(), strcmp(), strchr(), strstr(), etc.

• In <cstdlib>:

– atoi(), atof(), etc.

More about variables Single-dimensional arrays

Multi-dimensional arrays C strings: character arrays

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Arrays 55 / 55

• To convert a value to a C string, we will wait until we introduce C++ strings.

