
IM 1003: Programming Design

Pointers

Ling-Chieh Kung

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 1 / 39

Ling-Chieh Kung

Department of Information Management

National Taiwan University

March 24, 2014

Outline

• Basics of pointers

• Call by reference/pointer

• Arrays and pointer arithmetic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 2 / 39

Pointers

• A pointer is a variable which stores a memory address.

– An array variable is a pointer.

• To declare a pointer, use *.

• Examples:

type pointed* pointer name; type pointed *pointer name;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 3 / 39

– These pointers will store addresses.

– These pointers will point to int/double variables.

• We may point to any type.

• To point to different types, use different types of pointers.

int *ptrInt; double* ptrDou;

Sizes of pointers

• All pointers have the same size.

– In a 32-bit computer, a pointer is allocated 4 bytes.

– In a 64-bit computer, a pointer is allocated 8 bytes.

int* p1 = 0;
cout << sizeof(p1) << endl; // 8
double* p2 = 0;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 4 / 39

• The length of pointers decides the maximum size of the memory space.

– 32 bits: 232 bytes = 4GB.

– 64 bits: 264 bytes = ?

double* p2 = 0;
cout << sizeof(p2) << endl; // 8

Pointer assignment

• We use the address-of operator & to obtain a variable’s address:

• The address-of operator & returns the (beginning) address of a variable.

• Example:

pointer name = &variable name

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 5 / 39

– int a = 5;

int* ptr = &a;

– ptr points to a, i.e., ptr stores the address of a.

• When assigning an address, the two types must match.

– int a = 5;

double* ptr = &a; // error!

• int a = 5;

• double b = 10.5;

• int* aPtr = &a;

• double* bPtr = &b;

Variables in memory

Address Identifier Value

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

0x20c64c
bPtr 0x20c660

0x20c650

0x20c644 a 5

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 6 / 39

Memory

0x20c658
aPtr 0x20c644

0x20c65c

0x20c660
b 10.5

0x20c664

Address operators

• There are two address operators.

– &: The address-of operator. It returns a variable’s address.

– *: The dereference operator. It returns the pointed variable (not the value!).

• For int a = 5:

– a equals 5.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 7 / 39

– &a returns an address (e.g., 0x22ff78).

• For int* ptrA = &a:

– ptrA stores an address (e.g., 0x22ff78).

– &ptrA returns the pointer’s address (e.g., 0x21aa74). This has nothing to do
with the pointed variable a.

– *ptrA returns a, the variable pointed by the pointer.

Address operators

• Example:

int a = 10;
int* p1 = &a;
cout << "value of a = " << a << endl;
cout << "value of p1 = " << p1 << endl;
cout << "address of a = " << &a << endl;
cout << "address of p1 = " << &p1 << endl;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 8 / 39

cout << "address of p1 = " << &p1 << endl;
cout << "value of the variable pointed by p1 = " << *p1 << endl;

Address operators and NULL

• &: returns a variable’s address.

– We cannot use &100, &(a++) (which returns the value of a).

– We can only perform & on a variable.

– We cannot assign value to &x (&x is a value!).

– We can get a usual variable’s or a pointer variable’s address.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 9 / 39

• *: returns the pointed variable, not its value.

– We can perform * on a pointer variable.

– We cannot perform * on a usual variable.

– We cannot change a variable’s address. No operation can do this.

• A pointer pointing to nothing should be assigned NULL or 0.

• Examples:

Address operators and NULL

int a = 10;
int* ptr = NULL;
ptr = &a;
cout << *ptr; // ?
*ptr = 5;

int a = 10;
int* ptr1 = NULL;
int* ptr2 = NULL;
ptr1 = ptr2 = &a;
cout << *ptr1; // ?

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 10 / 39

*ptr = 5;
cout << a; // ?
a = 18;
cout << *ptr; // ?

cout << *ptr1; // ?
*ptr2 = 5;
cout << *ptr1; // ?
(*ptr1)++;
cout << a; // ?

Address operators and NULL

• Dereferencing a null pointer shutdowns the program (a run-time error).

int* p2 = NULL;
cout << "value of p2 = " << p2 << endl;
cout << "address of p2 = " << &p2 << endl;
cout << "value of the variable pointed by p2 = " << *p2 << endl;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 11 / 39

& and * cancel each other

• What is *&x if x is a variable?

– &x is the address of x.

– *(&x) is the variable stored in that address.

– So *(&x) is x.

• What is &*x if x is a pointer?

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 12 / 39

– If x is a pointer, *x is the variable stored at x (x stores an address!).

– &*x is the address of *x, which is exactly x.

• What is &*x if x is not a pointer?

Good programming style

• Initialize a pointer variable as 0 or NULL if no initial value is available.

– 0 is the standard in C++, while NULL is the standard in C. But they are the

same for representing “null pointer”.

– By using NULL, everyone knows the variable must be a pointer, and you are

not talking about a number or character.

• Without an initialization, a pointer points to somewhere... And we do not know

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 13 / 39

• Without an initialization, a pointer points to somewhere... And we do not know
where it is!

– Accessing an unknown address results in unpredictable results.

Good programming style

• When we use * in declaring a pointer, that * is not a dereference operator.

– It is just a special syntax for declaring a pointer variable.

• I prefer to treat int* as a type, which represents an “integer pointer”.

• Therefore, I prefer “int* p” to “int *p”.

• Be careful:

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 14 / 39

• I use multiple statements to declare multiple pointers.

int* p, q; // p is int*, q is int
int *p, *q; // two pointers
int* p, *q; // two pointers
int* p, * q; // two pointers

Outline

• The basics of pointers

• Call by reference/pointer

• Arrays and pointer arithmetic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 15 / 39

References and pointers

• Recall this example: void swap (int x, int y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl;
swap(a, b);
cout << a << " " << b << endl;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 16 / 39

}
void swap (int x, int y)
{
int temp = x;
x = y;
y = temp;

}

References and pointers

• When invoking a function and passing parameters, the default scheme is to “call
by value” (or “pass by value”).

– The function declares its own local variables, using a copy of the arguments’
values as initial values.

– Thus we swapped the two local variables declared in the function, not the
original two we want to swap.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 17 / 39

original two we want to swap.

• To solve this, we can use “call by reference” or “call by pointer.”

– They are somewhat different, but the principle is the same.

– It is enough to know and use only one of them.

Call by reference

• A reference is a variable’s alias.

• The reference is another variable that refers to the variable.

• Thus, using the reference is the same as using the variable.

int c = 10;
int& d = c; // declare d as c’s reference

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 18 / 39

• int& d = c is to declare d as c’s reference.

– This & is different from the & operator which returns a variable’s address.

• int& d = 10 is an error.

– A literal cannot have an alias!

int& d = c; // declare d as c’s reference
d = 20;
cout << c << endl; // 20

Call by reference

• Now we know how to change a
parameter’s value:

– Instead of declaring a usual
local variable as a parameter,
declare a reference variable.

• This is to “call by reference”.

void swap (int& x, int& y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl;
swap(a, b);
cout << a << " " << b << endl;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 19 / 39

• This is to “call by reference”. }
void swap (int& x, int& y)
{
int temp = x;
x = y;
y = temp;

}

Call by reference

• Thus we can call by reference and modify our parameters’ value.

• When calling by reference, the only thing you have to do is to add an & in the

parameter declaration in the function header.

• Mostly people use references only in call by reference.

• View the & in declaration as a part of type.

• I use int& a = b; instead of int &a = b;.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 20 / 39

• I use int& a = b; instead of int &a = b;.

Call by pointers

• To call by pointers:

– Declare a pointer variable as a parameter.

– Pass a pointer variable or an address returned by & when invoking.

• For the swap() example:

void swap(int* ptrA, int* ptrB)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 21 / 39

• Invocation becomes swap(&a, &b);

void swap(int* ptrA, int* ptrB)
{
int temp = *ptrA;
*ptrA = *ptrB;
*ptrB = temp;

}

Call by pointers

• How about the following implementation?

void swap(int* ptrA, int* ptrB)
{
int* temp = ptrA;
ptrA = ptrB;
ptrB = temp;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 22 / 39

– Invocation is still swap(&a, &b);

• Will the two arguments be swapped? What really happens?

ptrB = temp;
}

Call by pointers

• The principle behind calling by reference and calling by pointer is the same.

• You can view calling by reference as a special tool made by using pointers.

• Do not mix references and pointers!

– E.g., we cannot pass a pointer variable or an address to a reference!

• You can use calling by reference in most situations, and it is clearer and more

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 23 / 39

convenient than calling by pointer.

– When you just want to modify arguments or return several values, call by
reference.

– When you really have to do something by pointers, call by pointer.

Outline

• The basics of pointers

• Call by reference/pointer

• Arrays and pointer arithmetic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 24 / 39

Pointers and arrays

• An array variable is a pointer!

– It records the address of the first element of the array.

• When passing an array, we pass a pointer.

• The array indexing operator [] indicates offsetting.

• To further understand this issue, let’s study pointer arithmetic.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 25 / 39

Pointer arithmetic

• Usually, one arbitrary address
returned by performing arithmetic
on a pointer variable is useless

• The arithmetic is useful (and
should be used) only when you can
predict a variable’s address.

int a = 10;
int* ptr = &a;
cout << ptr++;
// just an address
// we don't know what's here

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 26 / 39

predict a variable’s address.

– In particular, when variables
are stored consecutively.

// we don't know what's here
cout << *ptr;
// dangerous!

Pointer Arithmetic: ++ and --

• The type a pointer pointing to is used as the unit of measurement.

• ++: Increment the pointer variable’s value by the number of bytes a variable in

this type occupies (i.e., point to the next variable).

– e.g., for integer pointers, the value (an address) increases by 4 (bytes).

• --: Decrement the pointer variable’s value by the number of bytes a variable in

this type occupies (i.e., point to the previous variable).

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 27 / 39

this type occupies (i.e., point to the previous variable).

double a[3] = {10.5, 11.5, 12.5};
double* b = &a[0];
cout << *b << " " << b << endl; // 10.5
b = b + 2;
cout << *b << " " << b << endl; // 12.5
b--;
cout << *b << " " << b << endl; // 11.5

Pointer Arithmetic: -

• We cannot add two address.

• However, we can find the difference of two addresses.

double a[3] = {10.5, 11.5, 12.5};
double* b = &a[0];
double* c = &a[2];

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 28 / 39

double* c = &a[2];
cout << c - b << endl; // 2, not 16!

Pointers and arrays

• Changing the value stored in a pointer is dangerous:

int y[3] = {1, 2, 3};
int* x = y;
for(int i = 0; i < 3; i++)
cout << *(x + i) << " "; // 1 2 3

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 29 / 39

cout << *(x + i) << " "; // 1 2 3
for(int i = 0; i < 3; i++)
cout << *(x++) << " "; // 1 2 3

for(int i = 0; i < 3; i++)
cout << *(x + i) << " "; // unpredictable

Indexing and pointer arithmetic

• The array indexing operator [] is just an interface for doing pointer arithmetic.

int x[3] = {1, 2, 3};
for(int i = 0; i < 3; i++)
cout << x[i] << " "; // x[i] == *(x + i)

for(int i = 0; i < 3; i++)
cout << *(x++) << " "; // error!

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 30 / 39

• Interface: a (typically safer and easier) way of completing a task.

– x[i] and *(x + i) are identical.

– But using the former is safer and easier.

cout << *(x++) << " "; // error!

Outline

• The basics of pointers

• Call by reference/pointer

• Arrays and pointer arithematic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 31 / 39

Static memory allocation

• In C/C++, we declare an array by specifying it’s length as a constant variable or
a literal.

– int a[100];

• A memory space will be allocated to an array during the compilation time.

– 400 bytes will be allocated for the above statement.

static memory allocation

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 32 / 39

• This is called “static memory allocation”.

• We may decide the length of an array “dynamically”.

– That is, during the run time.

• To do so, we must use a different syntax.

– All types of variables may also be declared in this way.

Dynamic memory allocation

• The operator new allocates a memory space and returns the address.

– In C, we use a different keyword melloc.

• new int; allocates 4 bytes without recording the address

• int* a = new int;makes a record the address of the space

• int* a = new int(5);makes the space contains 5 as the value

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 33 / 39

• int* a = new int[5]; allocates 20 bytes (for 5 integers).

– a points to the first integer.

Dynamic memory allocation

• All of these spaces are allocated during the run time.

• So we may write

int len = 0;
cin >> len;
int* a = new int[len];

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 34 / 39

• This allocates a space according to the input from users.

int* a = new int[len];

Dynamic memory allocation

• A space allocated during the run time has no name!

– On the other hand, every space allocated during
compilation has a name.

• To access a dynamically-allocated space, we use a
pointer to store its address.

Address Identifier Value

0x20c644

N/A

1

0x20c648 2

0x20c64c 3

0x20c650

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 35 / 39

int len = 0;
cin >> len; // 3
int* a = new int[len];
for (int i = 0; i < 3; i++)
a[i] = i + 1;

0x20c654

0x20c658 len 0

0x20c65c

0x20c660
a 0x20c644

0x20c664

Memory

Memory leak

• For spaces allocated during the
compilation time, the system will release
these spaces automatically when the
corresponding variables no longer exist.

• For spaces allocated during the run time,

void func (int a)
{
double b;

} // 4 + 8 bytes are released

void func()

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 36 / 39

• For spaces allocated during the run time,
the system will NOT release these spaces
unless it is asked to do so.

– Because the space has no name!

void func()
{
int* b = new int;

}
// 8 bytes for b are released
// 4 bytes for new int are not

Memory leak

• Programmers must keep a record for all spaced allocated dynamically.

double* b = new double;
*b = 5.2;
double c = 10.6;
b = &c; // now no one can access

// the space containing 5.2

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 37 / 39

• This problem is called memory leak.

– We lose the control of allocated spaces.

– These spaces are wasted.

– They will not be released unit the program ends.

// the space containing 5.2

Releasing spaces manually

• The delete operator will

release a dynamically-
allocated space.

• The delete operator will

int* a = new int;
delete a; // release 4 bytes
int* b = new int[5];
delete b; // release only 4 bytes!

// Unpredictable results may happen
delete [] b; // release all 20 bytes

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 38 / 39

• The delete operator will

do nothing to the pointer.
To avoid reuse the
released space, set the
pointer to NULL.

int* a = new int;
delete a; // a is still pointing to the address
a = NULL; // now a points to nothing
int* b = new int[5];
delete [] b; // b is still pointing to the address
b = NULL; // now b points to nothing

Good programming style

• Use DMA for arrays with no predetermined length.

• Whenever you write a new statement, add a delete statement below

immediately (unless you know you really do not need it).

• Whenever you want to change the value of a pointer, check whether memory
leak occurs.

• Whenever you write a delete statement, set the pointer to NULL.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Pointers 39 / 39

• Whenever you write a delete statement, set the pointer to NULL.

