
IM 1003: Programming Design

Self-defined data types (in C)

Ling-Chieh Kung

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 1 / 34

Ling-Chieh Kung

Department of Information Management

National Taiwan University

March 31, 2014

Self-defined data types

• We can define data types by ourselves.

– By combining data types into a composite type.

– By redefining data types.

• We can always complete every program without self-defined data types.

– But we can make our program clearer and more flexible by using them.

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 2 / 34

• In C, there are many ways of creating self-defined data types.

– typedef, struct, union, and enum.

– We will introduce only the first two.

– You can learn the other two by yourself (or ignore them at this moment).

Outline

• struct

• typedef

• structwith member functions

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 3 / 34

Example

• How to write a program to create two points A and B on the Cartesian
coordinate system, compute vector AB, and print it out?

– Let’s implement a function that computes the vector.

int main()
{
int x1 = 0, x2 = 0;

void vector(int x1, int y1, int x2,
int y2, int& rx, int& ry)

{

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 4 / 34

– May we improve the program?

int x1 = 0, x2 = 0;
int y1 = 10, y2 = 20;
int rx = 0, ry = 0;
vector (x1, y1, x2, y2, rx, ry);
cout << rx << " " << ry << endl;
return 0;

}

{
rx = x2 - x1;
ry = y2 - y1;

}

struct

• There are so many variables!

– Some of them must be used in pairs.

• We want to group different data types into a single type.

– Group x and y into a “point”.

• In C, we do so by using struct (abbreviation of structure).

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 5 / 34

– We may group basic data types, nonbasic data types (e.g., pointers and
arrays), or even self-defined data types.

– We do so when an item naturally consists of multiple attributes.

– We do so to make the program easier to read and maintain.

Example with struct

• Let’s define a new type Point:

struct Point
{
int x;
int y;

};

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 6 / 34

– The keyword struct is used to define structures.

• Now it is a data type and we can use it to declare variables.

};

Example with struct

• With the new data type, the program
can now be written in this way:

– Declare variables with the self-
defined type name.

– Assign values to both attributes by
grouping values by curly brackets.

Point vector (Point a, Point b)
// Point as parameters

{
Point vecXY;
vecXY.x = B.x - A.x;
vecXY.y = B.y – A.y;
return vecXY; // return a Point

}

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 7 / 34

grouping values by curly brackets.

– Access attributes through the dot
operator.

• The function is also changed:

– Use Point as a parameter type.

– No need to call by reference.

}
int main()
{
Point a = {0, 0}, b = {10, 20};
Point vecAB = vector(a, b);
cout << vecAB.x << " ";
cout << vecAB.y << endl;
return 0;

}

struct definition

• The syntax of defining a structure is:

– A structure is typically named with the first
letter capitalized.

– An attribute/field can be of a basic data
type, a nonbasic data type, or a self-
defined data type.

struct struct name
{
type1 field 1;
type2 field 2;
type3 field 3;
// more fields

};

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 8 / 34

defined data type.

– The number of attributes is unlimited.

– All those semicolons are required.

• As another example, let’s add one more
attribute into Point:

};

struct Point
{
int x;
int y;
char name;

};

struct variable declaration

• To declare a variable defined as a structure, use

– Point A;

– Point B, C, thisIsAPoint;

struct name variable name;

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 9 / 34

– Point staticPointArray[10];

– Point* pointPtr = &aPoint;

– Point* dynamicPointArray = new Point[10];

• You may also (but usually people do not) write

– struct Point A;

– struct Point B, C, thisIsAPoint;

Accessing struct attributes

• Use the dot operator “.” to access a struct variable’s attributes.

– An attribute is a single variable.

– We may do all the regular operations on an attribute.

struct variable.attribute name

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 10 / 34

Point a, b;
a.x = 0; // assignment
a.y = a.x + 10; // arithmetic
a.name = 'A';
cin >> b.name; // input
cout << a.x; // print out
b.y = a.y; // assignment

struct assignment

• We may use curly brackets to
assign values to multiple
attributes.

Point A = {0, 0, 'A'};
Point B;
B = {10, 20, 'B'};
C = {5, 0};

struct Point
{
int x;
int y;
int z;

};

int main()

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 11 / 34

• Partial assignments are
allowed (with unassigned
attributes set to 0).

C = {5, 0};
D = {2};

int main()
{
Point A[100];
for (int i = 0; i < 50; i++)
A[i] = {20};

for (int i = 0; i < 100; i++)
cout << A[i].y << " " << A[i].z << endl;

return 0;
}

struct and functions

• You may pass a struct variable as an argument into a function.

• You may return a struct variable from a function, too.

• Passing a struct

variable by default is a
call-by-value process.

• You may call by

struct Point
{
int x;
int y;

int main()
{
Point a = {10, 20};
cout << a.x << " "

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 12 / 34

• You may call by
reference, as always.

int y;
};
void reflect (Point& a)
{
int temp = a.x;
a.x = a.y;
a.y = temp;

}

cout << a.x << " "
<< a.y << endl;

reflect (a);
cout << a.x << " "

<< a.y << endl;
return 0;

}

Memory allocation for struct

• When we declare a structure variable, how does the compiler allocate memory
spaces to it?

– How many bytes are allocated in total?

– Are attributes put together or separated?

– What if we declare a structure array?

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 13 / 34

struct Point
{
int x;
int y;

};
int main()
{
Point a[10];
cout << sizeof (Point) << " " << sizeof (a) << endl;
cout << &a << endl;
for (int i = 0; i < 10; i++)

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 14 / 34

for (int i = 0; i < 10; i++)
cout << &a[i] << " " << &a[i].x << " " << &a[i].y << endl;

Point* b = new Point[20];
cout << sizeof (b) << endl;
delete [] b;
b = NULL;
return 0;

}

Outline

• struct

• typedef

• structwith member functions

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 15 / 34

typedef

• typedef is the abbreviation of “type definition”.

• It allows us to create a new data type from another data type.

• To write a type definition statement:

typedef old type new type;

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 16 / 34

• This defines new type as old type.

– old typemust be an existing data type.

• So we do not really create any new type. Why do we do so?

Example

• Suppose we want to write a program that converts a given US dollar amount
into an NT dollar amount.

double nt = 0;
double us = 0;
cin >> us;
nt = us * 29;

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 17 / 34

• Suppose in your program there are ten different kinds of monetary units, and
you declared all of them to be double.

• What if one day you want to change all the types to float?

nt = us * 29;
cout << nt << endl;

Example with typedef

• To avoid modifying ten declaration statements, typedef helps!

typedef double Dollar; // define Dollar as double
Dollar nt; // declare a variable as Dollar
Dollar us;
cin >> us;
nt = us * 29;
cout << nt << endl;

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 18 / 34

– Dollar is a self-defined data type. It can be used to declare variables.

– If one day we want to change the type into float, int, etc., we only need

to do one modification.

– Also, when one looks at your program, she will know that nt and us are

“dollars” instead of just some double variables.

cout << nt << endl;

“Type” life cycle

• You can put the typedef statement anywhere in the program.

– At the beginning of the program, in the main function, inside a block, etc.

• The self-defined type can be used only in the block (if you declare it in any
block).

• The same rule applies to struct.

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 19 / 34

Example

• What may happen if we compile
this program?

• How to fix it?

• Put the type definition statements
and structure definition in the place
that anyone can find it easily.

int exchange (Dollar from, double rate);
int main()
{
typedef double Dollar;
Dollar NT, US;
cin >> US;
NT = exchange (US, 29);
cout << NT << endl;

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 20 / 34

that anyone can find it easily.

– Usually it is the beginning of the
program, just under the include
statement.

• Put them globally unless you really
use them locally.

cout << NT << endl;
return 0;

}
int exchange (Dollar from, double rate)
{
return from * rate;

}

typedef from struct

• Recall that we have done the following:

– But vecAB is not a point! It is a vector.

Point a = {0, 0};
Point b = {10, 20};
Point vecAB = vector (a, b);

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 21 / 34

– But vecAB is not a point! It is a vector.

– Vectors have the same attributes as points do. Should we define another
structure that is identical to Point?

• We may combine typedef and struct.

// define Vector from Point
typedef Point Vector;

typedef from struct

• Suppose we do this: struct Point
{
int x;
int y;

}; // end of struct definition
// define from struct

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 22 / 34

• Then we may write:

// define from struct
typedef Point Vector;

Point a(0, 0);
Point b(10, 20);
Vector vecAB = vector (a, b);

Example: <ctime>

• Many C++ standard library
functionalities are provided with new
types defined by typedef.

• As an example, the function
clock(), defined in <ctime>,

returns the number of system clock

#include <iostream>
#include <ctime>
using namespace std;

int main()
{
clock_t sTime = clock();
for(int i = 0; i < 1000000000; i++)

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 23 / 34

returns the number of system clock
ticks elapsed since the execution of
the program.

• What is clock_t?

for(int i = 0; i < 1000000000; i++)
;

clock_t eTime = clock();

cout << sTime << " " << eTime << endl;
return 0;

}

Example: <ctime>

• clock() returns a type clock_t variable (for the number of ticks).

– clock_t is actually a long int. In <ctime>, there is a statement:

• So in our own functions, we may write clock_t sTime = clock();.

typedef long int clock_t;

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 24 / 34

– We may change it to long int sTime = clock();.

• Why does the standard library do so?

• To print out the number of seconds instead of ticks:

cout << static_cast<double>(eTime - sTime) / CLOCKS_PER_SEC << endl;

Outline

• struct

• typedef

• structwith member functions

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 25 / 34

Member variables

• Recall that we have defined

struct Point
{
int x;
int y;

};

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 26 / 34

– We say that x and y are the attributes or fields of the structure Point.

– They are also called the member variables of Point.

• Suppose we want to write a function that calculate a given point’s distance from
the origin. How may we do this?

};

A global-function implementation

• We may write a function which takes a point as a parameter:

double distOri(Point p)
{
double dist = sqrt(pow(p.x, 2) + pow(p.y, 2));
return dist;

}

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 27 / 34

– We need to include <cmath>.

• This works, but this function is doing something that is related to only one point.

– And it is calculating a property of the point.

• We may want to write this function as a part of Point.

}

A member-function implementation

• We may redefine Point to include a member function:

– distOri() is a member
function of Point.

– No argument is needed.

– Who’s x and y?

struct Point
{
int x;
int y;
double distOri()
{

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 28 / 34

• To invoke a member function:
{
double dist = sqrt(pow(x, 2) + pow(y, 2));
return dist;

}
};

int main()
{
Point a = {3, 4};
cout << a.distOri();
return 0;

}

A member-function implementation

• One may define a member function outside the struct statement.

struct Point
{
int x;
int y;
double distOri ();

};

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 29 / 34

– In fact this is typically preferred. Why?

};
double Point::distOri () // scope resolution
{ // is required
double dist = sqrt (pow (x, 2) + pow (y, 2));
return dist;

}

The two ways of thinking

• What is the difference between the global-function and member-function
implementations?

• The perspectives of looking at this functionality is different.

– As a global function: I want to create a machine outside a point. Once I
throw a point into it, I get the desired distance.

– As a member function: I want to attach an operation on a point. Once I run

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 30 / 34

– As a member function: I want to attach an operation on a point. Once I run
this operation, I get the desired distance.

• The second perspective is preferred when we design more complicated items.

• The second way also enhances modularity.

Another example

• Recall that we have written a reflect function:

struct Point
{
int x;
int y;

};
void reflect (Point& a)

int main()
{
Point a = {10, 20};
cout << a.x << " "

<< a.y << endl;
reflect (a);

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 31 / 34

• May we (should we) implement it as a member function?

void reflect (Point& a)
{
int temp = a.x;
a.x = a.y;
a.y = temp;

}

reflect (a);
cout << a.x << " "

<< a.y << endl;
return 0;

}

Another example

• A member-function implementation:

struct Point
{
int x;
int y;
void reflect();

};

int main()
{
Point a = {10, 20};
cout << a.x << " "

<< a.y << endl;
a.reflect();

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 32 / 34

• Which one do you prefer?

};
void Point::reflect()
{
int temp = x;
x = y;
y = temp;

}

a.reflect();
cout << a.x << " "

<< a.y << endl;
return 0;

}

One common “error” for beginners

• What is “wrong” in the following definition?

struct Point
{
int x;
int y;
double distOri (Point p);

};

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 33 / 34

• The program can still run. However, never do this!

};
double Point::distOri (Point p)
{
double dist = sqrt (pow (p.x, 2) + pow (p.y, 2));
return dist;

}

One common “error” for beginners

• How about this?

struct Point
{
int x;
int y;
void reflect (Point& p);

};

struct typedef structwith member functions

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Self-defined types in C 34 / 34

};
void Point::reflect(Point& p)
{
int temp = p.x;
p.x = p.y;
p.y = temp;

}

