
IM 1003: Programming Design

Classes (I)

Ling-Chieh Kung

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 1 / 29

Ling-Chieh Kung

Department of Information Management

National Taiwan University

April 7, 2014

Object-oriented programming

• Until now, we have focused on procedural programming.

– The keys are logical controls and subprocedures, i.e., if, for, and functions.

• We will begin to introduce a new programming methodology: object-oriented
programming (OOP).

– It is based on procedural programming.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 2 / 29

– It is different in the perspective of thinking.

• In C, we use structures; in C++, we use classes.

• Like structures, we can use classes to define data types by ourselves.

– When we create variables with classes, they are called objects.

• As we will see, classes are much more powerful than structures.

Outline

• Motivations

• Basic concepts

• Constructors and destructors

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 3 / 29

An example in struct

• Recall that we have the structure MyVector:

struct MyVector
{
int n;
int* m;
void init(int dim);

};

int main()
{
MyVector v;
int dimension = 0;
cin >> dimension;
v.init(dimension);

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 4 / 29

};
void MyVector::init(int dim)
{
n = dim;
m = new int[n];
for(int i = 0; i < n; i++)
m[i] = 0;

}

v.init(dimension);
delete [] v.m;
return 0;

}

An example in struct

• Let’s add some member functions:

struct MyVector
{
int n;
int* m;
void init(int dim);
void print();

void MyVector::print()
{
cout << "(";
for(int i = 0; i < n - 1; i++)
cout << m[i] << ", ";

cout << m[n-1] << ")\n";

int main()
{
MyVector v;
v.init(5);
v.m[0] = 10;
v.print();

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 5 / 29

void print();
};
void MyVector::init(int dim)
{
n = dim;
m = new int[n];
for(int i = 0; i < n; i++)
m[i] = 0;

}

cout << m[n-1] << ")\n";
}

v.print();
delete [] v.m;
return 0;

}

Drawbacks for using a structure

• Several drawbacks:

– We may forget to initialize the vector.

– The vector may be printed in a bad way.

– n and the length of the dynamic array mmay be inconsistent.

– We may forget to release the spaces allocated dynamically.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 6 / 29

MyVector v;
int dim = 0;
cin >> dim;
v.init(dim);
cin >> v.n;
delete [] v.m;

MyVector a;
int dim = 0;
cin >> dim;
a.init(dim);

MyVector v;
v.print();
delete [] v.m;

MyVector v;
v.init(5);
v.m[0] = 10;
cout << "(";
for(int i = 0; i < n - 1; i++)
cout << m[i] << ", ";

cout << m[n-1];
delete [] v.m;

Drawbacks for using a structure

• Our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed ways.

– n and the length of the dynamic array m cannot be modified separately.

– Spaces allocated dynamically will be released automatically.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 7 / 29

MyVector v;
int dim = 0;
cin >> dim;
v.init(dim);
cin >> v.n;
delete [] v.m;

MyVector a;
int dim = 0;
cin >> dim;
a.init(dim);

MyVector v;
v.print();
delete [] v.m;

MyVector v;
v.init(5);
v.m[0] = 10;
cout << "(";
for(int i = 0; i < n - 1; i++)
cout << m[i] << ", ";

cout << m[n-1];
delete [] v.m;

Drawbacks for using a structure

• So we use classes in C++!

• Recall our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed ways.

– n and the length of the dynamic array m cannot be modified separately.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 8 / 29

– Spaces allocated dynamically will be released automatically.

• In C++, a class can:

– Define member functions that will be called automatically when and only
when an object is created/destroyed.

– Hide some its members and open only allowed members to the public.

Instance vs. static variables/functions

• In a class, we can define variables and functions, just as we did in a structure.

– They are call member variables and member functions.

• However, now there are four types of class members:

– Instance variables (default).

– Static variables.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 9 / 29

– Instance functions (default).

– Static functions.

• Starting from now, when we say member variables (fields) and member
functions, we are talking about instance ones.

Outline

• Motivations

• Basic concepts

• Constructors and destructors

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 10 / 29

Class definition

• To define a class:

– Simply change struct to class.

– We may also define the function inside the
class definition block.

• Compilation error! Why?

class MyVector
{
int n;
int* m;
void init(int dim);
void print();

};

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 11 / 29

};
void MyVector::init(int dim)
{
n = dim;
m = new int[n];
for(int i = 0; i < n; i++)
m[i] = 0;

}

void MyVector::print()
{
cout << "(";
for(int i = 0; i < n - 1; i++)
cout << m[i] << ", ";

cout << m[n-1] << ")\n";
}

int main()
{
MyVector v;
v.init(5);
delete [] v.m;
return 0;

}

Visibility

• We can/must set visibility of members in a class:

– public: it can be accessed anywhere.

– private: it can be accessed only in the class.

– protected: discussed later in this semester.

• These three keywords are the visibility modifiers.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 12 / 29

• The default visibility level is private.

– That is why v.init(5) in the main function generates a compilation error.

• By setting visibility, we can hide our instance members.

– Usually all instance variables are private.

– Let’s see how to do this.

Visibility

• A class with different visibility levels:

• Private instance members can only be
accessed inside the definition of
instance functions.

– E.g., init() and print().

• Once we set n and m as private:

class MyVector
{
private:
int n;
int* m;

public:
void init(int dim);
void print();

};

int main()

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 13 / 29

• Once we set n and m as private:

– It is impossible for the vector to be
printed in a bad way.

– It is impossible for n and the size of
m to be inconsistent!

int main()
{
MyVector v;
v.init(5); // fine
v.n = 3; // compilation error!
delete [] v.m;
return 0;

}

Invoking instance functions in classes

• In an instance function, we can invoke an instance function.

int MyVector::max()
{
int max = m[0];
for(int i = 1; i < n; i++)
{
if(m[i] > max)

class MyVector
{
private:
int n;
int* m;
int max();

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 14 / 29

if(m[i] > max)
max = m[i];

}
return max;

}
void MyVector::printMax()
{
cout << "Max: " << max() << "\n";

}

int max();
public:
void init(int dim);
void print();
void printMax();

};

Why data hiding?

• In general, when we write a class, we want it to work as we expect.

– That is, “under control”.

• For example, we do not want a vector to be printed out in strange formats, such
as {0, 10, 20}, [0, 10, 20), (0-10-20), etc.

– If we allow another programmer to access n and m in their programs, he can

print out a vector in any way he likes!

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 15 / 29

print out a vector in any way he likes!

– So we set instance variables to be private and make print() public.

• Similarly, setting n and m private and leaving print() public present
inconsistency between n and the size of m.

Visibility

• In general, some instance variables/functions should not be accessed directly (or
even known) by other ones.

– They should be used only in the class.

– In this case, set them private.

• You may see many classes with all instance variables private and all instance
functions public.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 16 / 29

functions public.

– If you do not know what to do, do this.

– However, any instance function that should not be invoked by others
should also be private.

Encapsulation

• The concept of packaging (member variables and member functions) and data
hiding is together called “encapsulation”.

– Roughly speaking, we pack data (member variables) into a black box and
provide only controlled interfaces (member functions) for others to access
these data.

– Others should not even know how those interfaces are implemented.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 17 / 29

– Others should not even know how those interfaces are implemented.

• For OOP, there are three main characteristics/functionalities:

– Encapsulation.

– Inheritance.

– Polymorphism.

• The last two will be discussed later in this semester.

Instance function overloading

• We can overload an instance function
with different parameters.

void MyVector::init()
{
n = 0;
m = NULL;

}
void MyVector::init(int dim)
{
init(dim, 0);

class MyVector
{
private:
int n;
int* m;

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 18 / 29

init(dim, 0);
}
void MyVector::init(int dim, int value)
{
n = dim;
m = new int[n];
for(int i = 0; i < n; i++)
m[i] = value;

}

int* m;
public:
void init();
void init(int dim);
void init(int dim, int value);
void print();

};

Objects as arguments or return values

• We can pass an object into any function.

• A function can return an object.

• Vector add(MyVector v1, MyVector v2);

– Returns the sum of the two input vectors.

– This should be a global function rather than an instance function. Why?

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 19 / 29

Objects as instance variables

• An instance variable’s type can be a class.

• In other words, an object can have other objects as members.

– This can also happen for structures.

• For example:

class MyTriangle class MyPolytope

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 20 / 29

class MyTriangle
{
private:
MyVector vertex1;
MyVector vertex2;
MyVector vertex3;
// ...

};

class MyPolytope
{
private:
int n; // number of vertices
MyVector* vertex;
// ...

};

Outline

• Motivations

• Basic concepts

• Constructors and destructors

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 21 / 29

Our hopes

• Recall our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed
ways.

– n and the length of the dynamic array m

cannot be modified separately.

class MyVector
{
private:
int n;
int* m;

public:
void init();

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 22 / 29

cannot be modified separately.

– Spaces allocated dynamically will be
released automatically.

• The second and the third have been done.

• The first and the last require constructors and
destructors.

void init();
void init(int dim);
void init(int dim, int value);
void print();

};

Constructors

• A constructor is an instance function of a class.

– However, it is very special.

• A constructor will be invoked automatically when the object is created.

– It must be invoked.

– It cannot be invoked twice.

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 23 / 29

– It cannot be invoked by the programmer manually.

• Usually it is used to initialize the object.

Constructors

• A constructor’s name is the same as the class.

• It does not return anything, even void.

• You can (and usually will) overload them.

• The constructor with no parameter is the
default constructor.

class MyVector
{
private:
int n;
int* m;

public:
MyVector();

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 24 / 29

• If, and only if, a programmer does not define
any constructor, the compiler makes a
default one which does nothing.

• A constructor may be private.

MyVector();
MyVector(int dim);
MyVector(int dim, int value);
void print();

};

Constructors for MyVector

• Let’s define our class MyVectorwith constructors:

class MyVector
{
private:
int n;
int* m;

public:

MyVector::MyVector()
{
n = 0;
m = NULL;

}
MyVector::MyVector(int dim, int value)

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 25 / 29

public:
MyVector();
MyVector(int dim, int value = 0);
void print();

};

MyVector::MyVector(int dim, int value)
{
n = dim;
m = new int[n];
for(int i = 0; i < n; i++)
m[i] = value;

}

Constructors for MyVector

• Now, in the main function:

int main()
{

MyVector v1(1);
MyVector v2(3, 8);
v1.print(); // (0)
v2.print(); // (8, 8, 8)

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 26 / 29

• If any member variable needs an initial value when an object is created, you
should write a constructor to initialize it.

• Use constructor overloading to provide flexibility.

v2.print(); // (8, 8, 8)
// memory leak
return 0;

}

Destructors

• A destructor is invoked right before an object is destroyed.

– It must be public and have no parameter.

• To replace the default destructor by a self-defined one, use ~:

class MyVector
{
// ...

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 27 / 29

// ...
public:
// ...
~MyVector() { cout << "Bye~\n"; }

};

Destructors

• One typical mission for a destructor is to release those dynamically allocated
memory spaces pointed by member variables.

– The default destructor does not do this. One must do this by herself/himself.

– If this is not done, there will be memory leaks.

class MyVector

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 28 / 29

{
private:
int n;
int* m;

public:
// ...
~MyVector() { delete [] m; }

};

Timing for constructors/destructors

• When a class has other classes as types of
instance variables, when are all the
constructors/destructors invoked?

class A
{
public:

A() { cout << "A\n"; }
~A() { cout << "a\n"; }

};

class B

Motivations Basic concepts Constructors and destructors

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (I) 29 / 29

class B
{
private:

A a;
public:

B() { cout << "B\n"; }
~B() { cout << "b\n"; }

};

int main()
{

B b;
return 0;

}

