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Static members   

• A class contains some instance variables and functions. 

– Each object has its own copy of instance variables and functions. 

• A member variable/function may be an attribute/operation of a class. 

– When the attribute/operation is class-specific rather than object-specific. 

– A class-specific attribute/operation should be identical for all objects. 
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• These variables/functions are called static members. 



• In MS Windows, each window is 
an object. 

– Windows is written in C++. 

– Mac OS is written in 
Objective-C. 

• Each window has some object-

Static members: an example  

class Window
{
private:
int width;
int height;
int locationX;
int locationY; 
int status; // 0: min, 1: usual, 2: max
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• Each window has some object-
specific attributes. 

• They also share one class-specific 
attribute: the color of their title 
bars. 

int status; // 0: min, 1: usual, 2: max
static int barColor; // 0: gray, ...
// ...

public:
static int getBarColor(); 
static void setBarColor(int color);
// ...

};



Static members: an example 

• We have to initialize a static 
variable globally. 

• To access static members, use 
class name::member name.

int main()
{
Window w;
cout << Window::getBarColor();

int Window::barColor = 0; // default

int Window::getBarColor()
{
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cout << Window::getBarColor();
cout << endl;
Window::setBarColor(1);
return 0;

}

{
return barColor;

}

void Window::setBarColor(int color)
{
barColor = color;

}



Static members

• Recall that we have four types of members: 

– Instance variables and instance functions. 

– Static variables and static functions. 

• Some rules regarding static members: 

– We may access a static member inside an instance function. 
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– We cannot access an instance member inside a static function. 

– Though not suggested, we may access a static member through an object. 

Window w;
cout << w.getBarColor() << endl;



Good programming

• If one attribute should be identical for all objects, it should be declared as a 
static variable. 

– Do not make it an instance variable and try to maintain consistency. 

• Do not use an object to invoke a static member. 

– This will confuse the reader.

• Use class name::member name even inside member function definition 
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• Use class name::member name even inside member function definition 

to show that it is a static member. 

int Window::getBarColor()
{
return Window::barColor;

}



Another way of using static members

• One may use a static variable to count for how many times a function is invoked. 

• One may use a static member variable to count for how many times an object 
is created. 

class A
{
private:

int A::count = 0;

int main()
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private:
static int count;

public:
A() { A::count++; }
static int getCount()
{ return A::count; }

};

int main()
{
A a1, a2, a3;
cout << A::getCount() << endl;
// 3

return 0;
}



Another way of using static members

• With the help of the destructor, we may keep a record on the number of active
(alive) objects. 

class A
{
private:
static int count;

int A::count = 0;

int main()
{
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static int count;
public:
A() { A::count++; }
~A() { A::count--; }
static int getCount() 
{ return A::count; }

};

{
if(true)
A a1, a2, a3;

cout << A::getCount() << endl;
// 0

return 0;
}
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Object pointers

• What we have done is to use an object to invoke instance functions. 

– E.g., a.print()where a is an object and print() is an instance function.

• If we have a pointer ptrA pointing to the object a, we may write 
(*ptrA).print() to invoke the instance function print(). 

– *ptrA returns the object a. 

• To simplify this, C++ offers the member access operator ->. 
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• To simplify this, C++ offers the member access operator ->. 

– This is specifically for an object pointer to access its members. 

– (*ptrA).print() is equivalent to ptrA->print().

– (*ptrA).x is equivalent to ptrA->x.



• An example of using an object pointer:

– new MyVector(5) dynamically allocates a memory space. 

Object pointers

int main()
{
// an object pointer
MyVector* ptrV = new MyVector(5);

int main()
{
MyVector v(5);
MyVector* ptrV = &v;
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– In which case does such a memory space have a name? 

MyVector* ptrV = new MyVector(5);
// instance function invocation
ptrA->print(); 
delete ptrV;
return 0;

}

MyVector* ptrV = &v;
v.print();
ptrV->print();  
return 0;

}



Why object pointers?

• Object pointers are more useful than pointers for basic data types. 

• Why? 

– Passing a pointer into a function is more efficient than passing the object.

– A pointer can be much smaller than an object. 

– Copying a pointer is easier than copying an object. 
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• Other reasons will be discussed in other lectures.



Passing objects into a function

• Consider a function that takes three vectors and returns their sum. 

MyVector cenGrav
(MyVector v1, MyVector v2, MyVector v3)

{
// assume that their dimensions are identical
int n = v1.getN(); 
int* cen = new int[n];

MyVector::getN() 
{ return n; }
MyVector::getM(int i) 
{ return m[i]; }
MyVector::MyVector
(int d, int v[])
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– We need to create four MyVector objects in this function. 

int* cen = new int[n];
for(int i = 0; i < n; i++) 
cen[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector cog(n, cen); 
return cog; 

}

(int d, int v[])
{
n = d;
for(int i = 0; i < n; i++)
m[i] = v[i];

}



Passing object pointers into a function

• We may pass pointers rather than objects into this function: 

MyVector cenGrav(MyVector* v1, MyVector* v2, MyVector* v3)
{
// assume that their dimensions are identical
int n = v1->getN(); 
int* cen = new int[n];
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– We need to create only one MyVector object in this function. 

– Nevertheless, using pointers to access members requires more time.  

int* cen = new int[n];
for(int i = 0; i < n; i++) 
cen[i] = v1->getM(i) + v2->getM(i) + v3->getM(i);

MyVector cog(n, cen); 
return cog; 

}



Passing object references 

• We may also pass references: 

MyVector cenGrav(MyVector& v1, MyVector& v2, MyVector& v3)
{
// assume that their dimensions are identical
int n = v1.getN(); 
double* cen = new int[n];
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– We create only one MyVector object in this function.

double* cen = new int[n];
for(int i = 0; i < n; i++) 
cen[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector cog(n, cen); 
return cog; 

}



Constant references 

• While we may want to pass references to save time, we need to protect our 
arguments from being modified. 

MyVector cenGrav
(const MyVector& v1, const MyVector& v2, const MyVector& v3)

{
// ...

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 17 / 36

– Save time while being safe! 

• Should we do the same thing when passing object pointers? 

// ...
}



Copying an object

• Consider the following program: 

class A
{
private:
int i;

public:
A() { cout << "A"; }

int main()
{
A a1, a2, a3; // AAA
cout << "\n===\n";
f(a1, a2, a3); // A
return 0;
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• Why just one “A” when invoking f()?

A() { cout << "A"; }
};
void f(A a1, A a2, A a3)
{
A a4;

}

return 0;
}



Copying an object

• In general, when we pass by value, a local variable will be created. 

– When we pass by value for an object, a local object is created. 

– The constructor should be invoked. 

– So why just one “A” when invoking f()? 

• How about this? int main()
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– No constructor is invoked when a4

is created? 

int main()
{
A a1, a2, a3; // AAA
cout << "\n===\n"; 
A a4 = a1; // nothing!
return 0;

}



Copying an object

• Creating an object by “copying” an object is a special operation. 

– When we pass an object into a function using the 
call-by-value mechanism. 

– When we assign an object to another object. 

– When we create an object with another object as the 
argument of the constructor. 

f(a1, a2, a3);

A a4 = a1;

A a5(a1);
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argument of the constructor. 

• When this happens, the copy constructor will be invoked. 

– If the programmer does not define one, the compiler adds a default copy 
constructor (which of course does not print out anything) into the class. 

– The default copy constructor simply copies all member variables one by one, 
regardless of the variable types. 



Copy constructors

• We may implement our own copy constructor. 

• In the C++ standard, the parameter must be a constant reference. 

– If calling by value, it will invoke itself infinitely many times. 

class A
{
private:

void f(A a1, A a2, A a3)
{
A a4;
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private:
int i;

public:
A() { cout << "A"; }
A(const A& a) { cout << "a"; }

};

A a4;
}
int main()
{
A a1, a2, a3; // AAA
cout << "\n===\n";
f(a1, a2, a3); // aaaA
return 0;

}



Copy constructors for MyVector

• For MyVector, we may implement a copy constructor as: 

MyVector::MyVector(const MyVector& v)
{
n = v.n;
m = v.m; // copying the address in v.m to m

}
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– This has nothing different from the default copy constructor. 

int main()
{
MyVector v1(5, 1);
MyVector v2(v1); // what is bad? 

}



Shallow copy

• If no member variable is an array/pointer, the default copy constructor is fine. 

• If there is any array or pointer member variable, the default copy constructor 
does “shallow copy”. 

– And two different vectors may share the same space for values. 

– Modifying one vector affects the other! 
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MyVector::MyVector(const MyVector& v)
{
n = v.n;
m = v.m; // shallow copy

}



Deep copy

• To correctly copy a vector (by creating new values), we need to write our own 
copy constructor. 

• We say that we implement “deep copy” by ourselves. 

– In the self-defined copy constructor, we manually create another dynamic 
array, set its elements’ values according to the original array, and use m to 

record its address. 
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record its address. 

MyVector::MyVector(const MyVector& v)
{
n = v.n;
m = new int[n]; // deep copy
for(int i = 0; i < n; i++)
m[i] = v.m[i];

}
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friend for functions and classes

• One class can allow its “friends” to access its private members.

• Its friends can be global functions or other classes. 

– Then inside test() and member functions of 
Test, those private members of MyVector can 

be accessed. 

– MyVector cannot access Test’s members. 

class MyVector
{
// ...

friend void test(); 
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– MyVector cannot access Test’s members. 

• A friend can be declared in either the public or 
private section. 

• A class must declare its friends by itself. 

– One cannot declare itself as another one’s friend! 

friend void test(); 
friend class Test;
};



friend: an example

void test()
{
MyVector v;
v.n = 100; // syntax error if not a friend
cout << v.n; // syntax error if not a friend

}

class Test
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class Test
{
public:
void test(MyVector v)
{
v.x = 200; // syntax error if not a friend
cout << v.x; // syntax error if not a friend

}
};



friend for functions and classes

• Declare friends only if data hiding is preserved. 

– Do not set everything public! 

– Use structures rather than classes when nothing should be private. 

– Write appropriate public member functions (e.g., getters and setters). 

• friendmay also help you hide data.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 28 / 36

– If a private member should be accessed only by another class/function, we 
should declare a friend instead of writing a getter/setter. 



this

• When you create an object, it occupies a memory space. 

• Inside an instance function, this is a pointer storing the address of an object. 

– this is a C++ keyword. 

• When the compiler reads this, it looks at the memory space to find the object. 

• The two implementations are identical: 
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void MyVector::print()
{
cout << "(";
for(int i = 0; i < this->n - 1; i++)
cout << this->m[i] << ", ";

cout << this->m[this->n - 1] << ")\n";
}

void MyVector::print()
{
cout << "(";
for(int i = 0; i < n - 1; i++)
cout << m[i] << ", ";

cout << m[n - 1] << ")\n";
}



this

• Suppose x is an instance variable. 

– Usually you can use x directly instead of this->x.

– However, if you want to have a local variable or function parameter 
having the same name with an instance variable, you need this->.

MyVector::MyVector(int d, int v[]) MyVector::MyVector(int n, int m[])
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• A local variable hides the instance variable with the same name. 

– this->x is the instance variable and x is the local variable. 

{
n = d;
for(int i = 0; i < n; i++)
m[i] = v[i];

}

{
this->n = n;
for(int i = 0; i < n; i++)
this->m[i] = m[i];

}



Good programming style

• You may choose to always use this->when accessing instance variables and 

functions.

• This will allow other programmers (or yourself in the future) to know they are 
members without looking at the class definition.
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Constant objects

• Some variables are by nature constants. 

• We may also have constant objects. 

const double PI = 3.1416;

const MyVector ORIGIN_3D(3, 0);
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– This is the origin in R3. It should not be modified. 

• Should there be any restriction on instance function invocation? 

const MyVector ORIGIN_3D(3, 0);



Constant objects

• A constant object cannot invoke a function that 
modifies its instance variables. 

– In C++, functions that may be invoked by 
a constant object must be declared as a 
constant instance function. 

• For a constant instance function:

class MyVector
{
private:
int n; 
int* m; 

public:
MyVector();
MyVector(int dim, int v[]); 
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• For a constant instance function:

– It can be invoked by non-constant objects. 

– It cannot modify any instance variable. 

• For a non-constant instance function: 

– It cannot be invoked by constant objects 
even if no instance variable is modified. 

MyVector(int dim, int v[]); 
~MyVector(); 
int getN() const;
int getM() const;
void print(); 

};



Constant instance variables

• We may also have constant instance variables. 

– E.g., for a vector, its dimension should be 
fixed once it is determined. 

• Obviously, a constant instance variable should 
be initialized in the constructor(s). 

– However: 

class MyVector
{
private:
const int n; 
int* m; 

public:
MyVector();
MyVector(int dim, int v[]);
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– However: MyVector(int dim, int v[]);
~MyVector(); 
int getN() const;
int getM() const;
void print(); 

};

MyVector::MyVector()
{
n = 0; // error! 
m = NULL;

}



Member initializers

• For a constant instance variable: 

– It cannot be assigned a value. 

– It cannot be initialized globally. 

• We need a member initializer. 

– A specific operation for initializing 

class MyVector
{
private:
const int n; 
int* m; 

public:
MyVector() : n(0) { m = NULL; }
MyVector(int dim, int v[]) : n(dim)
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an instance variable. 

– Can also be used for initializing 
nonconstant instance variables. 

MyVector(int dim, int v[]) : n(dim)
{
for(int i = 0; i < n; i++)
m[i] = v[i];    

} 
// ...

};



Initializing constant instance variables

• Member initializers can also be used when constructors are implemented outside 
the class definition block. 

class MyVector
{
private:
const int n; 

MyVector::MyVector() : n(0)
{
m = NULL;

}
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• Member initializers are used a lot in general. 

const int n; 
int* m; 

public:
MyVector();
MyVector(int dim, int v[]);
// ...

};

}
MyVector::MyVector(int dim, int v[]) : n(dim)
{
for(int i = 0; i < n; i++)
m[i] = v[i];

}




