
IM 1003: Programming Design

Classes (II)

Ling-Chieh Kung

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 1 / 36

Ling-Chieh Kung

Department of Information Management

National Taiwan University

April 14, 2014

Outline

• Static members

• Objects and pointers

• friend, this, and const

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 2 / 36

Static members

• A class contains some instance variables and functions.

– Each object has its own copy of instance variables and functions.

• A member variable/function may be an attribute/operation of a class.

– When the attribute/operation is class-specific rather than object-specific.

– A class-specific attribute/operation should be identical for all objects.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 3 / 36

• These variables/functions are called static members.

• In MS Windows, each window is
an object.

– Windows is written in C++.

– Mac OS is written in
Objective-C.

• Each window has some object-

Static members: an example

class Window
{
private:
int width;
int height;
int locationX;
int locationY;
int status; // 0: min, 1: usual, 2: max

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 4 / 36

• Each window has some object-
specific attributes.

• They also share one class-specific
attribute: the color of their title
bars.

int status; // 0: min, 1: usual, 2: max
static int barColor; // 0: gray, ...
// ...

public:
static int getBarColor();
static void setBarColor(int color);
// ...

};

Static members: an example

• We have to initialize a static
variable globally.

• To access static members, use
class name::member name.

int main()
{
Window w;
cout << Window::getBarColor();

int Window::barColor = 0; // default

int Window::getBarColor()
{

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 5 / 36

cout << Window::getBarColor();
cout << endl;
Window::setBarColor(1);
return 0;

}

{
return barColor;

}

void Window::setBarColor(int color)
{
barColor = color;

}

Static members

• Recall that we have four types of members:

– Instance variables and instance functions.

– Static variables and static functions.

• Some rules regarding static members:

– We may access a static member inside an instance function.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 6 / 36

– We cannot access an instance member inside a static function.

– Though not suggested, we may access a static member through an object.

Window w;
cout << w.getBarColor() << endl;

Good programming

• If one attribute should be identical for all objects, it should be declared as a
static variable.

– Do not make it an instance variable and try to maintain consistency.

• Do not use an object to invoke a static member.

– This will confuse the reader.

• Use class name::member name even inside member function definition

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 7 / 36

• Use class name::member name even inside member function definition

to show that it is a static member.

int Window::getBarColor()
{
return Window::barColor;

}

Another way of using static members

• One may use a static variable to count for how many times a function is invoked.

• One may use a static member variable to count for how many times an object
is created.

class A
{
private:

int A::count = 0;

int main()

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 8 / 36

private:
static int count;

public:
A() { A::count++; }
static int getCount()
{ return A::count; }

};

int main()
{
A a1, a2, a3;
cout << A::getCount() << endl;
// 3

return 0;
}

Another way of using static members

• With the help of the destructor, we may keep a record on the number of active
(alive) objects.

class A
{
private:
static int count;

int A::count = 0;

int main()
{

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 9 / 36

static int count;
public:
A() { A::count++; }
~A() { A::count--; }
static int getCount()
{ return A::count; }

};

{
if(true)
A a1, a2, a3;

cout << A::getCount() << endl;
// 0

return 0;
}

Outline

• Static members

• Objects and pointers

• friend, this, and const

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 10 / 36

Object pointers

• What we have done is to use an object to invoke instance functions.

– E.g., a.print()where a is an object and print() is an instance function.

• If we have a pointer ptrA pointing to the object a, we may write
(*ptrA).print() to invoke the instance function print().

– *ptrA returns the object a.

• To simplify this, C++ offers the member access operator ->.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 11 / 36

• To simplify this, C++ offers the member access operator ->.

– This is specifically for an object pointer to access its members.

– (*ptrA).print() is equivalent to ptrA->print().

– (*ptrA).x is equivalent to ptrA->x.

• An example of using an object pointer:

– new MyVector(5) dynamically allocates a memory space.

Object pointers

int main()
{
// an object pointer
MyVector* ptrV = new MyVector(5);

int main()
{
MyVector v(5);
MyVector* ptrV = &v;

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 12 / 36

– In which case does such a memory space have a name?

MyVector* ptrV = new MyVector(5);
// instance function invocation
ptrA->print();
delete ptrV;
return 0;

}

MyVector* ptrV = &v;
v.print();
ptrV->print();
return 0;

}

Why object pointers?

• Object pointers are more useful than pointers for basic data types.

• Why?

– Passing a pointer into a function is more efficient than passing the object.

– A pointer can be much smaller than an object.

– Copying a pointer is easier than copying an object.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 13 / 36

• Other reasons will be discussed in other lectures.

Passing objects into a function

• Consider a function that takes three vectors and returns their sum.

MyVector cenGrav
(MyVector v1, MyVector v2, MyVector v3)

{
// assume that their dimensions are identical
int n = v1.getN();
int* cen = new int[n];

MyVector::getN()
{ return n; }
MyVector::getM(int i)
{ return m[i]; }
MyVector::MyVector
(int d, int v[])

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 14 / 36

– We need to create four MyVector objects in this function.

int* cen = new int[n];
for(int i = 0; i < n; i++)
cen[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector cog(n, cen);
return cog;

}

(int d, int v[])
{
n = d;
for(int i = 0; i < n; i++)
m[i] = v[i];

}

Passing object pointers into a function

• We may pass pointers rather than objects into this function:

MyVector cenGrav(MyVector* v1, MyVector* v2, MyVector* v3)
{
// assume that their dimensions are identical
int n = v1->getN();
int* cen = new int[n];

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 15 / 36

– We need to create only one MyVector object in this function.

– Nevertheless, using pointers to access members requires more time.

int* cen = new int[n];
for(int i = 0; i < n; i++)
cen[i] = v1->getM(i) + v2->getM(i) + v3->getM(i);

MyVector cog(n, cen);
return cog;

}

Passing object references

• We may also pass references:

MyVector cenGrav(MyVector& v1, MyVector& v2, MyVector& v3)
{
// assume that their dimensions are identical
int n = v1.getN();
double* cen = new int[n];

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 16 / 36

– We create only one MyVector object in this function.

double* cen = new int[n];
for(int i = 0; i < n; i++)
cen[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector cog(n, cen);
return cog;

}

Constant references

• While we may want to pass references to save time, we need to protect our
arguments from being modified.

MyVector cenGrav
(const MyVector& v1, const MyVector& v2, const MyVector& v3)

{
// ...

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 17 / 36

– Save time while being safe!

• Should we do the same thing when passing object pointers?

// ...
}

Copying an object

• Consider the following program:

class A
{
private:
int i;

public:
A() { cout << "A"; }

int main()
{
A a1, a2, a3; // AAA
cout << "\n===\n";
f(a1, a2, a3); // A
return 0;

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 18 / 36

• Why just one “A” when invoking f()?

A() { cout << "A"; }
};
void f(A a1, A a2, A a3)
{
A a4;

}

return 0;
}

Copying an object

• In general, when we pass by value, a local variable will be created.

– When we pass by value for an object, a local object is created.

– The constructor should be invoked.

– So why just one “A” when invoking f()?

• How about this? int main()

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 19 / 36

– No constructor is invoked when a4

is created?

int main()
{
A a1, a2, a3; // AAA
cout << "\n===\n";
A a4 = a1; // nothing!
return 0;

}

Copying an object

• Creating an object by “copying” an object is a special operation.

– When we pass an object into a function using the
call-by-value mechanism.

– When we assign an object to another object.

– When we create an object with another object as the
argument of the constructor.

f(a1, a2, a3);

A a4 = a1;

A a5(a1);

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 20 / 36

argument of the constructor.

• When this happens, the copy constructor will be invoked.

– If the programmer does not define one, the compiler adds a default copy
constructor (which of course does not print out anything) into the class.

– The default copy constructor simply copies all member variables one by one,
regardless of the variable types.

Copy constructors

• We may implement our own copy constructor.

• In the C++ standard, the parameter must be a constant reference.

– If calling by value, it will invoke itself infinitely many times.

class A
{
private:

void f(A a1, A a2, A a3)
{
A a4;

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 21 / 36

private:
int i;

public:
A() { cout << "A"; }
A(const A& a) { cout << "a"; }

};

A a4;
}
int main()
{
A a1, a2, a3; // AAA
cout << "\n===\n";
f(a1, a2, a3); // aaaA
return 0;

}

Copy constructors for MyVector

• For MyVector, we may implement a copy constructor as:

MyVector::MyVector(const MyVector& v)
{
n = v.n;
m = v.m; // copying the address in v.m to m

}

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 22 / 36

– This has nothing different from the default copy constructor.

int main()
{
MyVector v1(5, 1);
MyVector v2(v1); // what is bad?

}

Shallow copy

• If no member variable is an array/pointer, the default copy constructor is fine.

• If there is any array or pointer member variable, the default copy constructor
does “shallow copy”.

– And two different vectors may share the same space for values.

– Modifying one vector affects the other!

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 23 / 36

MyVector::MyVector(const MyVector& v)
{
n = v.n;
m = v.m; // shallow copy

}

Deep copy

• To correctly copy a vector (by creating new values), we need to write our own
copy constructor.

• We say that we implement “deep copy” by ourselves.

– In the self-defined copy constructor, we manually create another dynamic
array, set its elements’ values according to the original array, and use m to

record its address.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 24 / 36

record its address.

MyVector::MyVector(const MyVector& v)
{
n = v.n;
m = new int[n]; // deep copy
for(int i = 0; i < n; i++)
m[i] = v.m[i];

}

Outline

• Static members

• Objects and pointers

• friend, this, and const

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 25 / 36

friend for functions and classes

• One class can allow its “friends” to access its private members.

• Its friends can be global functions or other classes.

– Then inside test() and member functions of
Test, those private members of MyVector can

be accessed.

– MyVector cannot access Test’s members.

class MyVector
{
// ...

friend void test();

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 26 / 36

– MyVector cannot access Test’s members.

• A friend can be declared in either the public or
private section.

• A class must declare its friends by itself.

– One cannot declare itself as another one’s friend!

friend void test();
friend class Test;
};

friend: an example

void test()
{
MyVector v;
v.n = 100; // syntax error if not a friend
cout << v.n; // syntax error if not a friend

}

class Test

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 27 / 36

class Test
{
public:
void test(MyVector v)
{
v.x = 200; // syntax error if not a friend
cout << v.x; // syntax error if not a friend

}
};

friend for functions and classes

• Declare friends only if data hiding is preserved.

– Do not set everything public!

– Use structures rather than classes when nothing should be private.

– Write appropriate public member functions (e.g., getters and setters).

• friendmay also help you hide data.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 28 / 36

– If a private member should be accessed only by another class/function, we
should declare a friend instead of writing a getter/setter.

this

• When you create an object, it occupies a memory space.

• Inside an instance function, this is a pointer storing the address of an object.

– this is a C++ keyword.

• When the compiler reads this, it looks at the memory space to find the object.

• The two implementations are identical:

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 29 / 36

void MyVector::print()
{
cout << "(";
for(int i = 0; i < this->n - 1; i++)
cout << this->m[i] << ", ";

cout << this->m[this->n - 1] << ")\n";
}

void MyVector::print()
{
cout << "(";
for(int i = 0; i < n - 1; i++)
cout << m[i] << ", ";

cout << m[n - 1] << ")\n";
}

this

• Suppose x is an instance variable.

– Usually you can use x directly instead of this->x.

– However, if you want to have a local variable or function parameter
having the same name with an instance variable, you need this->.

MyVector::MyVector(int d, int v[]) MyVector::MyVector(int n, int m[])

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 30 / 36

• A local variable hides the instance variable with the same name.

– this->x is the instance variable and x is the local variable.

{
n = d;
for(int i = 0; i < n; i++)
m[i] = v[i];

}

{
this->n = n;
for(int i = 0; i < n; i++)
this->m[i] = m[i];

}

Good programming style

• You may choose to always use this->when accessing instance variables and

functions.

• This will allow other programmers (or yourself in the future) to know they are
members without looking at the class definition.

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 31 / 36

Constant objects

• Some variables are by nature constants.

• We may also have constant objects.

const double PI = 3.1416;

const MyVector ORIGIN_3D(3, 0);

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 32 / 36

– This is the origin in R3. It should not be modified.

• Should there be any restriction on instance function invocation?

const MyVector ORIGIN_3D(3, 0);

Constant objects

• A constant object cannot invoke a function that
modifies its instance variables.

– In C++, functions that may be invoked by
a constant object must be declared as a
constant instance function.

• For a constant instance function:

class MyVector
{
private:
int n;
int* m;

public:
MyVector();
MyVector(int dim, int v[]);

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 33 / 36

• For a constant instance function:

– It can be invoked by non-constant objects.

– It cannot modify any instance variable.

• For a non-constant instance function:

– It cannot be invoked by constant objects
even if no instance variable is modified.

MyVector(int dim, int v[]);
~MyVector();
int getN() const;
int getM() const;
void print();

};

Constant instance variables

• We may also have constant instance variables.

– E.g., for a vector, its dimension should be
fixed once it is determined.

• Obviously, a constant instance variable should
be initialized in the constructor(s).

– However:

class MyVector
{
private:
const int n;
int* m;

public:
MyVector();
MyVector(int dim, int v[]);

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 34 / 36

– However: MyVector(int dim, int v[]);
~MyVector();
int getN() const;
int getM() const;
void print();

};

MyVector::MyVector()
{
n = 0; // error!
m = NULL;

}

Member initializers

• For a constant instance variable:

– It cannot be assigned a value.

– It cannot be initialized globally.

• We need a member initializer.

– A specific operation for initializing

class MyVector
{
private:
const int n;
int* m;

public:
MyVector() : n(0) { m = NULL; }
MyVector(int dim, int v[]) : n(dim)

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 35 / 36

an instance variable.

– Can also be used for initializing
nonconstant instance variables.

MyVector(int dim, int v[]) : n(dim)
{
for(int i = 0; i < n; i++)
m[i] = v[i];

}
// ...

};

Initializing constant instance variables

• Member initializers can also be used when constructors are implemented outside
the class definition block.

class MyVector
{
private:
const int n;

MyVector::MyVector() : n(0)
{
m = NULL;

}

Static members Objects and pointers friend, this, and const

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Classes (II) 36 / 36

• Member initializers are used a lot in general.

const int n;
int* m;

public:
MyVector();
MyVector(int dim, int v[]);
// ...

};

}
MyVector::MyVector(int dim, int v[]) : n(dim)
{
for(int i = 0; i < n; i++)
m[i] = v[i];

}

