
Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 1 / 32

IM 1003: Programming Design

File I/O and C++ Strings

Ling-Chieh Kung

Department of Information Management

National Taiwan University

April 28, 2014

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 2 / 32

Applications of classes

• We have studied a lot about classes.

– Encapsulation.

– Constructors, copy constructors, destructors.

– Operator overloading.

• Remaining topics:

– Inheritance.

– Polymorphism.

• Today let’s study two applications of classes.

– File input/output.

– C++ strings.

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 3 / 32

Outline

• File I/O

– Writing data to a file

– Reading data from a file

• C++ Strings

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 4 / 32

File I/O

• The von Neumann

architecture:

• With the techniques

of file input/output

(file I/O), we will

read data from and

store data to files in the hard discs.

– So that the results can still be kept after the program terminates.

• We will focus on plain-text files.

– Those files that can be directly edited with Notepad on MS Windows.

Input
CPU

Memory
Output

Storage

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 5 / 32

A plain-text file

• Files store data.

– A plain-text file stores characters.

– A MS Word document stores characters and format information.

– A bitmap file stores color codes.

• How are characters stored in a plain-text files?

– Each character has its own position.

– For each opened file, there is a

position pointer indicating the

current reading/writing position.

– To control the reading/writing operations, we control the position pointer.

a b c d e f g

0 1 2 3 4 5 6

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 6 / 32

Writing to a file

• The first character is stored at position 0.

• In general, once a character is written to a file:

– The character replaces the old character at the current position.

– The position pointer moves to the next position (from i to i + 1).

• When a character n is written to this file:

a b c d e f g

0 1 2 3 4 5 6

a b c n e f g

0 1 2 3 4 5 6

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 7 / 32

File streams

• In C++, input and output activities are managed in streams.

– E.g., data may flow from cin or into cout.

• To replace the console and keyboard by files, in C++ we create ifstream and

ofstream objects.

• ifstream and ofstream are classes defined in <fstream>.

– They can be used to create input/output file stream objects.

– Simply imagine those objects as target files!

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 8 / 32

Output file streams

• To open and close an output file stream:

– open() and close() are public member functions.

– file name is a C string.

• Is there a member variables storing the file name?

• How are open() and close() implemented?

ofstream file object;

file object.open(file name);

// ...

file object.close();

ofstream myFile;
myFile.open("temp.txt");

// ...

myFile.close();

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 9 / 32

Writing to an output file stream

• To write to an output file stream, we may use <<.

– << has been overloaded for the class ofstream.

– It returns ofstream& for concatenated output streams.

– The second argument of << can be of any basic data type.

• What if we want to put a MyVector object as the second argument?

• What if we replace myFile by cout in the third statement.

ofstream myFile;
myFile.open("temp.txt");

myFile << "1 abc\n &%^ " << 123.45;

myFile.close();

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 10 / 32

Options for an output file stream

• An open mode can be set when we open an output file stream.

– ios::out (default): The window starts at location 0; remove existing data.

– ios::app: The window starts at the end; never modify existing data.

– ios::ate: The window starts at the end; can modify existing data.

• ios is a class; out, app, and ate are public static variables.

ofstream file object;

file object.open(file name, option);

// ...

file object.close();

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 11 / 32

Constructors and other members

• The class ofstream also provide constructors:

– Regardless of the extension name, we are creating/opening a plain text file.

• ofstream provides other member functions.

– E.g., put(char c) writes the character c into the file.

ofstream file object (file name, option);

ofstream file object (file name);

ofstream myFile("temp.txt");

myFile << "1 abc\n &%^ " << 123.45;

myFile.close();

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 12 / 32

Example

• What will happen if we replace scoreFile by cout?

• How to check whether a

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main()

{

 ofstream scoreFile("temp.txt", ios::out);

 char name[20] = {0};

 int score = 0;

 char notFin = 0;

 bool con = true;

 if(!scoreFile)

 exit(1);

 while (con)

 {

 cin >> name >> score;

 scoreFile << name << " " << score << "\n";

 cout << "Continue (Y/N)? ";

 cin >> notFin;

 con = ((notFin == 'Y') ? true : false);

 }

 scoreFile.close();

 return 0;

}

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 13 / 32

Outline

• File I/O

– Writing data to a file

– Reading data from a file

• C++ Strings

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 14 / 32

Input file streams

• To read data from a file, we create an input file stream.

• We create an ifstream object.

• The only open mode we will use for ifstream is iso::in (default).

• Again, we may use if(!myFile) to check whether a file is really opened.

– If the file does not exist, !myFile returns false.

ifstream file object;

file object.open(file name);

// ...

file object.close();

ifstream myFile;
myFile.open("temp.txt");

// ...

myFile.close();

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 15 / 32

Reading from an input file stream

• If the input data file is well-formatted, we may use the operator >>.

– Like most of testing input data for your Homework.

– Those files that you may predict the type of the next piece of data.

• For example, suppose we have a file containing names and grades:

– In each line, there is a name and a score (integer).

– Of course, they are separated by a white space.

• How to calculate the average grades?

• How to find the one with the highest grades?

• How to generate a frequency distribution?

Tony 100

Adam 98

Robin 95

John 90

Mary 100

Bob 80

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 16 / 32

Reading from an input file stream

• >> reads data between two spaces (or tabs or new line characters) and tries to

convert that piece of data into the specified type.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

 ifstream inFile("score.txt");

 if(inFile)

 {

 char name[20] = {0};

 int score = 0;

 int sumScore = 0;

 int scoreCount = 0;

 while(inFile >> name >> score) // when does it stop?

 {

 sumScore += score;

 scoreCount++;

 }

 if(scoreCount != 0)

 cout << static_cast<double>(sumScore) / scoreCount;

 else

 cout << "no grade!";

 }

 inFile.close();

 return 0;

}

Tony 100

Adam 98

Robin 95

John 90

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 17 / 32

End of file

• In each file, there is a special character “end of file”.

– In C++, it is represented by the variable EOF.

– It is always at the end of a file.

• When we run our program:

• An input operation (e.g., inFile >> name) returns false if it reads EOF.

Tony 100

Adam 98

T o n y 1 0 0 \n A d a m 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 18 / 32

Reading from an input file stream

• Let’s modify the while loop:

– The member function eof() returns

true if the window is at EOF.

• Let’s “get” something!

– get() reads one character.

– We may use char c = inFile.get()

to record that character.

while(!inFile.eof())

{

 inFile >> name;

 // inFile.get(); // Try them!

 // inFile.get();

 inFile >> score;

 sumScore += score;

 scoreCount++;

}

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 19 / 32

Unformatted input files

• Sometimes a data file is not formatted.

– We cannot predict what the next type will be.

– Like the P operation in Homework 7 (if the number of nodes are given, the

operation becomes formatted).

• In this case, we read data as characters and then manually find the types.

• Some member functions:

– get() reads one character and returns it.

– getline() reads multiple characters into a character array.

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 20 / 32

get() and getline()

• Let’s use get():

• Let’s use getline():

while(!inFile.eof())

{

 char c = inFile.get();

 cout << c;

}

while(!inFile.eof())

{

 inFile.getline(name, 20);

 cout << name << endl;

}

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 21 / 32

getline() in a smarter way

• Let’s use getline() with the third argument:

• getline() stops when the third argument is read.

– The third argument must be a character.

• Determining the types and preparing a large enough buffer are always issues.

– C++ strings will help us.

while(!inFile.eof())

{

 inFile.getline(name, 20, ' '); // inFile >> name;

 cout << name << endl;

}

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 22 / 32

Updating a file

• How to update “Adam” to “Alexander”?

– The member function seekp() moves the window.

– What should we do when we are at ‘A’?

• Updating a file typically requires copy-and-paste.

– Because plain text files are sequential-access files.

• How to read from or write to random-access files?

Tony 100

Adam 98

Robin 95

John 90

Mary 100

Bob 80

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 23 / 32

Outline

• File I/O

– Writing data to a file

– Reading data from a file

• C++ Strings

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 24 / 32

C++ Strings: string

• From now on, we’ll say:

– C string: the string represented by a character array with a \0 at the end.

– C++ string: the class string defined in <string>.

• The C++ string is more convenient and powerful than C string. We’ll learn to

use it right now.

• To use C++ strings, #include <string>.

• In the class string, there are:

– A member variable, which is a character array whose length can vary.

– Many member functions.

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 25 / 32

string declaration

• string myString;

• string myString = "my string";

– string is a class defined in <string>.

– string is not a C++ keyword.

– myString is an object.

• A C++ string does not need a null character.

• We may use the member function length() to get the number of characters.

– e.g., myString.length() returns 9.

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 26 / 32

string assignment

• C++ string assignment is easy and
intuitive:

• We may also assign a C string to a

C++ string.

• Thanks to operator overloading!

string myString = "my string";

string yourString = myString;

string herString;

herString = yourString;

herString = "a new string";

char hisString[100] = "oh ya";

myString = hisString;

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 27 / 32

string concatenation and indexing

• C++ strings can be concatenated
with +.

• String literals or C strings also

work.

– += also works.

• To access a character in a C++
string, use [].

• Thanks to operator overloading!

string myString = "my string ";

string yourString = myString;

string herString;

herString = myString + yourString;

 // "my string my string "

string s = "123";

char c[100] = "456";

string t = s + c;

string u = s + "789" + t;

string myString = "my string";

char a = myString[5]; // r

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 28 / 32

string input: getline()

• For cin >> to input into a C++ string, white spaces are still delimiters.

• To fix this, now we cannot use cin.getline().

– The first argument of cin.getline() must be a C string.

• Use getline(cin, a string object).

– This is defined in <string>.

• Note that there is no length limitation.

string s;

getline(cin, s);

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 29 / 32

Substring

• We may use the member function substr() to get the substring of a string.

• As an example:

substr(begin index, # of characters)

string s = "abcdef";

string b = s.substr(2, 3);

 // b == "cde"

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 30 / 32

string finding

• We may use the member function find() to look for a string or character.

• This will return the beginning index of the argument, if it exists, or
string::npos, which is a variable in the namespace string, if not found.

• String literals or C strings can also be the argument.

find(a string)

string s = "abcdefg";

int i = s.find("bcd"); // i == 1;

string t;

cin >> t;

if(t.find("a") == string::npos)

 cout << "not containing a";

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 31 / 32

string comparison and modification

• We may use >, >=, <, <=, ==, != to compare two C++ strings.

• It is easy to find the comparison rule by yourself.

• String literals or C strings also work.

– As long as one side of the comparison is a C++ string, it is fine.

– However, if none of the two sides is a C++ string, there will be an error.

• We may use insert(), replace(), and erase() to modify a string.

• Look up these functions of string, and more, from books or websites.

Writing data to a file Reading data from a file C++ strings

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – File I/O and C++ Strings 32 / 32

string for unformatted input files

• For an unformatted input file, we used getline() or >> with C strings.

– The length of our buffer is always an issue.

• We may use C++ string instead!

while(!inFile.eof())

{

 inFile.getline(name, 20, ' '); // inFile >> name;

 cout << name << endl;

}

while(!inFile.eof())

{

 string buffer;

 inFile >> buffer;

 cout << buffer << endl;

}

Writing data to a file Reading data from a file C++ strings

