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Inheritance 

• The three main characteristic/functionalities of OOP:  

– Encapsulation: packaging + data hiding.  

– Inheritance: today’s topic.  

– Polymorphism: next lecture’s topic.  

• Through inheritance, we may create new classes from existing classes.  

– A derived (child) class inherits a base (parent) class.  

– A child class has (some) members defined in the parent class.  

• This is particularly useful when “XXX is a OOO”. 

– An apple is a fruit.  

– A circle is a shape.  

– A truck is a vehicle.  
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The first example 

• Recall that we have defined MyVector.  

• A two-dimensional (2D) vector is a vector!  

• Let’s create a class for 2D vector by  

inheritance.  

 

class MyVector 

{ 

protected: // to be explained 

  int n;  

  double* m;  

public: 

  MyVector(); 

  MyVector(int n, double m[]);   

  MyVector(const MyVector& v); 

  ~MyVector() 

  void print() const; 

  // ==, !=, <, [], =, += 

}; 

 

MyVector 

 

 

MyVector2D 
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Child class MyVector2D 

 

 

 

 

 

 

 

 

 

• Let’s all for MyVector2D!  

– The modifier public will be discussed later.  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

}; 

MyVector2D::MyVector2D() 

{ 

  this->n = 2; 

} 

MyVector2D::MyVector2D(double m[]) : MyVector(2, m) 

{ 

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

  cout << v[1] << endl; 

    

  return 0; 

} 
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Inheriting parent class’ members 

• Members in the parent class are automatically defined in the child class.  

– Except private members, constructors,  

and the destructor.  

– A protected member can only be accessed  

by itself and its successors.  

• What are the members of MyVector2D?  

class MyVector 

{ 

protected: 

  int n;  

  double* m;  

public: 

  MyVector(); 

  MyVector(int n, double m[]);   

  MyVector(const MyVector& v); 

  ~MyVector() 

  void print() const; 

  // ==, !=, <, [], =, += 

}; 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

}; 
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Invoking parent class’ constructors 

• The parent class’ constructor will not be inherited.  

• One of them will be invoked before the child class’ constructor is invoked.  

– Create the parent before creating the child!  

• If not specified, the parent’s default constructor will be invoked.  

MyVector::MyVector(): n(0), m(NULL)  

{ 

} 

 

MyVector2D::MyVector2D() 

{ 

  this->n = 2; 

  // this->m = NULL is redundant 

} 

int main() 

{ 

  MyVector2D v; 

  

  return 0; 

} 
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Invoking parent class’ constructors 

• To specify a parent’s constructor to call, use  the syntax for member initializer:  

– Pass appropriate arguments to control the behavior.  

MyVector::MyVector(int n, double m[]) 

{ 

  this->n = n; 

  this->m = new double[n]; 

  for(int i = 0; i < n; i++) 

    this->m[i] = m[i]; 

} 

MyVector2D::MyVector2D(double m[]) : MyVector(2, m) 

{ 

  // not MyVector(2, m) here!  

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

  cout << v[1] << endl; 

    

  return 0; 

} 
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Invoking copy constructors 

• How about the copy constructor?  

• If we do not define one for the child,  

the system provides a default one.  

• Before the child’s default copy  

constructor is invoked, the  

parent’s copy constructor will be  

automatically invoked.  

MyVector::MyVector(const MyVector& v) 

{ 

  this->n = v.n; 

  this->m = new double[n]; 

  for(int i = 0; i < n; i++) 

    this->m[i] = v.m[i];  

} 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  // no copy constructor 

}; 
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Invoking copy constructors 

• If we define a copy constructor for the child, we must specify the constructor 

we want to invoke!  

– Otherwise the parent’s default constructor will be invoked.  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  MyVector2D(const MyVector2D& v) {}  

}; 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  MyVector2D w(v); 

  w.print(); // error 

  cout << w[1] << endl; 

    

  return 0; 

} 
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Using parent’s member functions 

• Once member variables are set properly, typically all the member functions of 

the parent can be used with no error.  

void MyVector::print() const  

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 

double& MyVector::operator[](int i)  

{ 

  if(i < 0 || i >= n) 

    exit(1); 

  return m[i]; 

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

  cout << v[1] << endl; 

    

  return 0; 

} 
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Invoking parent class’ destructor 

• When an object of the child class is to  

be destroyed: 

– First the child’s destructor is invoked.  

– Then the parent’s destructor is  

invoked automatically, even if we do  

not define a destructor for the child.  

• Do not delete a point twice!  

– This results in a run time error.  

MyVector::~MyVector()  

{  

  delete [] m;  

} 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  // no destructor 

}; 
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Summary 

• Using inheritance to create new classes is so simple!  

 

 

 

 

 

– We save time and enhance consistency.  

– Pay attention to default constructors, copy constructors, and destructors.  

– If one thing should not be inherited, set it to private.  

 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D() { this-> n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {} 

}; 
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Brothers and sisters 

• One parent class can be inherited by multiple child classes.  

 

 

 

 

 

 

 

MyVector 

 

 

MyVector2D 

 

 

MyVector3D 

 

 

MyVector8D 
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Defining new members for the child 

• A child may have its own  

members.  

– The parent has no way to  

access a child’s member.  

• Let’s define a setValue()  

function without using arrays:  

– Note that this should never 
be a member of MyVector.  

• We may also define new  

member variables and static  

members.  

 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D() { this-> n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {} 

  void setValue(double i1, double i2); 

}; 

void MyVector2D::setValue(double i1, double i2) 

{ 

  if(this->m == NULL) 

    this->m = new double[2]; 

  this->m[0] = i1; 

  this->m[1] = i2; 

} 
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Function overriding 

• We may also redefine existing  

member inherited from a parent.  

– This typically happens to  

member functions.  

– We say that we override the  

member function.  

• As an example, let’s override  
print():  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D() { this-> n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {} 

  void setValue(double i1, double i2); 

  void print() const; 

}; 

void MyVector2D::print() const 

{ 

  cout << "2D: ("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 
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Function overriding 

• To override a parent’s member function, define a child’s member function with 

exactly the same function signature.  

– A child object will invoke the child’s implementation.  

– The parent’s implementation becomes hidden to a child object.  

• Inside the child class, we may invoke a parent’s member function by using ::.  

 

 

 

 

– Use it if consistency can be enhanced.  

void MyVector2D::print() const 

{ 

  cout << "2D: "; 

  MyVector::print(); 

} 
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Overriding a constant function 

• What will happen to the following 

program?  
class MyVector 

{ 

  // ... 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

  // ... 

  void print() { MyVector::print(); } 

  void print() const 

  { 

    cout << "2D: "; 

    MyVector::print(); 

  } 

}; 

int main() 

{ 

  double i[3] = {1, 2}; 

  const MyVector2D v(i); 

  v.print(); // ? 

   

  MyVector2D u; 

  u.setValue(3, 4); 

  u.print(); // ? 

   

  return 0; 

} 
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Overriding a constant function 

• How about this?  

class MyVector 

{ 

  // ... 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

  // ... 

  void print() { MyVector::print(); } 

}; 

int main() 

{ 

  double i[3] = {1, 2}; 

  const MyVector2D v(i); 

  v.print(); // error!  

   

  MyVector2D u; 

  u.setValue(3, 4); 

  u.print(); // ? 

   

  return 0; 

} 
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Overriding a member variable?  

• Technically, we may override a member variable.  

• For example, it seems to be a good idea to override n by a static constant:  

class MyVector2D : public MyVector 

{ 

private: 

  static const int n; 

public: 

  MyVector2D() { // no this->n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {}  

  // not overriding print();  

  void setValue(double i1, double i2); 

}; 

 

const int MyVector2D::n = 2; 

int main() 

{ 

  double i[3] = {1, 2}; 

  const MyVector2D v(i); 

  v.print(); // good :)  

   

  MyVector2D u; 

  u.setValue(3, 4); 

  u.print(); // bad :( 

   

  return 0; 

} 
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Overriding a member variable?  

• As print() is not overridden, v and u invoke the parent’s implementation.  

• The parent’s implementation uses MyVector::n.  

– With the constructor with an array as a parameter, MyVector::n is set to 2.  

– With the default constructor, MyVector::n is set to 0!  

• Even though MyVector2D::n is set to 2, it is not used in MyVector::print(). 

• What if we also override print()?  

void MyVector2D::print() const 

{ 

  cout << "2D: ("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; // good :) 

} 

void MyVector2D::print() const 

{ 

  cout << "2D: "; 

  MyVector::print(); // bad :( 

} 
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Overriding parent’s member 

• In general, overriding a parent’s member variable is not suggested.  

– Unless you really know what you are doing.  

– After all, we will inheritance because we believe XXX is a OOO. A parent’s 

member variable should be a part of a child!  

• Overriding a parent’s member function is useful.  

• What is the difference between function overloading and function overriding?  

• Sometimes we override a member function for efficiency.  
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Cascade inheritance 

• While a child inherits its parent, it may have a grandchild  

inheriting itself.  

• How may we create a class for two-dimensional  

nonnegative vectors?  

– {(x, y) | x ≧ 0, y ≧ 0}.  

• A 2D nonnegative vector is a 2D vector!  

• Let’s use inheritance again.  

 

MyVector 

 

 

MyVector2D 

 

 

NNVector2D 
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Child class NNVector2D  

• Defining NNVector2D is simple:  

 

 

 

 

 

 

 

 

– Why not specifying a parent’s constructor?  

– What happens when an NNVector2D object is created?   

class NNVector2D : public MyVector2D 

{ 

public: 

  NNVector2D(); // do we need it?  

  NNVector2D(double m[]);   

  void setValue(double i1, double i2); 

}; 

NNVector2D::NNVector2D() 

{ 

} 

NNVector2D::NNVector2D(double m[]) 

{ 

  this->m = new double[2]; 

  this->m[0] = m[0] >= 0 ? m[0] : 0; 

  this->m[1] = m[1] >= 0 ? m[1] : 0;   

} 

void NNVector2D::setValue 

  (double i1, double i2) 

{ 

  if(this->m == NULL) 

    this->m = new double[2]; 

  this->m[0] = i1 >= 0 ? i1 : 0; 

  this->m[1] = i2 >= 0 ? i2 : 0;   

} 
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Child class NNVector2D  

• How about  

 

 

 

 

  

 or   NNVector2D::NNVector2D(double m[]) 

{ 

  setValue(m[0], m[1]);  

} 

NNVector2D::NNVector2D(double m[]) : MyVector2D(2, m) 

{ 

  if(m[0] < 0) 

    this->m[0] = 0; 

  if(m[1] < 0) 

    this->m[1] = 0; 

} 
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Cascade inheritance 

• In general, a class has all the protected and public members (excluding 

constructors and destructors) of its predecessors.  

• When an object is created:  

– Constructors are invoked from the oldest class to the youngest class.  

– Each constructor can specify a one-level-above constructor to invoke.  

– Only one level!  

• When an object is destroyed:  

– Destructors are invoked from the youngest to the oldest.  
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Inheritance visibility 

• Recall that we added the modifier public when MyVector2D inherits 

MyVector and when NNVector2D inherits MyVector2D.  

– This modifier specifies the inheritance visibility.  

– It shows how this child modify the member visibility set by its predecessors.  

• When one inherits something from its parent, it may narrow the visibility of 

these members.  

– E.g., if my parent set it to protected, I may set it to private.  

– E.g., if my parent set it to private, I cannot set it to public.  

• Why only narrowing?  
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Inheritance visibility 

• In general, the visibility of a member in a child class depends on:  

– The member visibility by the parent.  

– The inheritance modifier.  

 

 

 

 

 

 

 

• If you have no idea, just use public inheritance.  

Member visibility 

by the parent 

Inheritance modifier 

public protected private 

public public protected private 

protected protected protected private 

private private private private 
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Multiple inheritance 

• Suppose your friend argues:  

– A two-dimensional 

vector is a vector.  

– A nonnegative vector is 

a vector.  

– A two-dimensional 

nonnegative vector 

should be the child of 

them!  

• Does that make sense?  

 

MyVector 

 

 

MyVector2D 

 

 

NNVector2D 

 

 

NNVector 
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Multiple inheritance 

• In C++, multiple inheritance is allowed.  

• However, it is not recommended!  

– In some other object-oriented programming languages (e.g., Java), multiple 

inheritance is forbidden.   

• If there are multiple parents:  

– Whose constructor/destructor goes first?  

– Whose variables are stored in the front?  

– May I inherit from my sister? May I inherit from my  grandaunt?  

• We also suggest you not to do multiple inheritance (even though it has been 

used in C++ standard library).  
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A problem regarding the overridden = 

• In fact, the definition of MyVector2D 

contains a flaw.  

– It is possible to have an object with 
n = 2 but m = NULL. 

• This is  

inconsistent.  

• How to fix it?  

const MyVector& MyVector::operator= 

  (const MyVector& v) 

{ 

  if(this != &v) 

  { 

    if(this->n != v.n) 

    { 

      delete [] this->m; 

      this->n = v.n; 

      this->m = new double[this->n]; 

    } 

    for(int i = 0; i < n; i++) 

      this->m[i] = v.m[i]; 

  }   

  return *this; 

} 

int main() 

{ 

  double i[3] = {1, 2}; 

  NNVector2D v(i); 

   

  NNVector2D u;   

  u = v; // error 

  u.print();   

  return 0; 

} 
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A question regarding the overridden = 

• Beside the previous issue, is there anything weird with the overridden =?  

 

 

• The type of the parameter  is MyVector, not MyVector2D!  

– Has MyVector2D been casted to MyVector?  

– May we cast MyVector to MyVector2D?  

– Is casting between classes allowed if they are not parent and child?  

– What if they are brothers are sisters (like MyVector2D and NNVector)?  

– How may we utilize casting between classes?  

• We will discuss these questions when we introduce polymorphism.  

const MyVector& operator=(const MyVector& v); 
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