
Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 1 / 35

IM 1003: Programming Design

Inheritance

Ling-Chieh Kung

Department of Information Management

National Taiwan University

May 12, 2014

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 2 / 35

Outline

• Basic ideas and the first example

• Defining new members and overriding old members

• Cascade inheritance and inheritance visibility

• One last discussion

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 3 / 35

Inheritance

• The three main characteristic/functionalities of OOP:

– Encapsulation: packaging + data hiding.

– Inheritance: today’s topic.

– Polymorphism: next lecture’s topic.

• Through inheritance, we may create new classes from existing classes.

– A derived (child) class inherits a base (parent) class.

– A child class has (some) members defined in the parent class.

• This is particularly useful when “XXX is a OOO”.

– An apple is a fruit.

– A circle is a shape.

– A truck is a vehicle.

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 4 / 35

The first example

• Recall that we have defined MyVector.

• A two-dimensional (2D) vector is a vector!

• Let’s create a class for 2D vector by

inheritance.

class MyVector

{

protected: // to be explained

 int n;

 double* m;

public:

 MyVector();

 MyVector(int n, double m[]);

 MyVector(const MyVector& v);

 ~MyVector()

 void print() const;

 // ==, !=, <, [], =, +=

};

MyVector

MyVector2D

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 5 / 35

Child class MyVector2D

• Let’s all for MyVector2D!

– The modifier public will be discussed later.

class MyVector2D : public MyVector

{

public:

 MyVector2D();

 MyVector2D(double m[]);

};

MyVector2D::MyVector2D()

{

 this->n = 2;

}

MyVector2D::MyVector2D(double m[]) : MyVector(2, m)

{

}

int main()

{

 double i[2] = {1, 2};

 MyVector2D v(i);

 v.print();

 cout << v[1] << endl;

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 6 / 35

Inheriting parent class’ members

• Members in the parent class are automatically defined in the child class.

– Except private members, constructors,

and the destructor.

– A protected member can only be accessed

by itself and its successors.

• What are the members of MyVector2D?

class MyVector

{

protected:

 int n;

 double* m;

public:

 MyVector();

 MyVector(int n, double m[]);

 MyVector(const MyVector& v);

 ~MyVector()

 void print() const;

 // ==, !=, <, [], =, +=

};

class MyVector2D : public MyVector

{

public:

 MyVector2D();

 MyVector2D(double m[]);

};

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 7 / 35

Invoking parent class’ constructors

• The parent class’ constructor will not be inherited.

• One of them will be invoked before the child class’ constructor is invoked.

– Create the parent before creating the child!

• If not specified, the parent’s default constructor will be invoked.

MyVector::MyVector(): n(0), m(NULL)

{

}

MyVector2D::MyVector2D()

{

 this->n = 2;

 // this->m = NULL is redundant

}

int main()

{

 MyVector2D v;

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 8 / 35

Invoking parent class’ constructors

• To specify a parent’s constructor to call, use the syntax for member initializer:

– Pass appropriate arguments to control the behavior.

MyVector::MyVector(int n, double m[])

{

 this->n = n;

 this->m = new double[n];

 for(int i = 0; i < n; i++)

 this->m[i] = m[i];

}

MyVector2D::MyVector2D(double m[]) : MyVector(2, m)

{

 // not MyVector(2, m) here!

}

int main()

{

 double i[2] = {1, 2};

 MyVector2D v(i);

 v.print();

 cout << v[1] << endl;

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 9 / 35

Invoking copy constructors

• How about the copy constructor?

• If we do not define one for the child,

the system provides a default one.

• Before the child’s default copy

constructor is invoked, the

parent’s copy constructor will be

automatically invoked.

MyVector::MyVector(const MyVector& v)

{

 this->n = v.n;

 this->m = new double[n];

 for(int i = 0; i < n; i++)

 this->m[i] = v.m[i];

}

class MyVector2D : public MyVector

{

public:

 MyVector2D();

 MyVector2D(double m[]);

 // no copy constructor

};

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 10 / 35

Invoking copy constructors

• If we define a copy constructor for the child, we must specify the constructor

we want to invoke!

– Otherwise the parent’s default constructor will be invoked.

class MyVector2D : public MyVector

{

public:

 MyVector2D();

 MyVector2D(double m[]);

 MyVector2D(const MyVector2D& v) {}

};

int main()

{

 double i[2] = {1, 2};

 MyVector2D v(i);

 MyVector2D w(v);

 w.print(); // error

 cout << w[1] << endl;

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 11 / 35

Using parent’s member functions

• Once member variables are set properly, typically all the member functions of

the parent can be used with no error.

void MyVector::print() const

{

 cout << "(";

 for(int i = 0; i < n - 1; i++)

 cout << m[i] << ", ";

 cout << m[n-1] << ")\n";

}

double& MyVector::operator[](int i)

{

 if(i < 0 || i >= n)

 exit(1);

 return m[i];

}

int main()

{

 double i[2] = {1, 2};

 MyVector2D v(i);

 v.print();

 cout << v[1] << endl;

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 12 / 35

Invoking parent class’ destructor

• When an object of the child class is to

be destroyed:

– First the child’s destructor is invoked.

– Then the parent’s destructor is

invoked automatically, even if we do

not define a destructor for the child.

• Do not delete a point twice!

– This results in a run time error.

MyVector::~MyVector()

{

 delete [] m;

}

class MyVector2D : public MyVector

{

public:

 MyVector2D();

 MyVector2D(double m[]);

 // no destructor

};

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 13 / 35

Summary

• Using inheritance to create new classes is so simple!

– We save time and enhance consistency.

– Pay attention to default constructors, copy constructors, and destructors.

– If one thing should not be inherited, set it to private.

class MyVector2D : public MyVector

{

public:

 MyVector2D() { this-> n = 2; }

 MyVector2D(double m[]) : MyVector(2, m) {}

};

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 14 / 35

Brothers and sisters

• One parent class can be inherited by multiple child classes.

MyVector

MyVector2D

MyVector3D

MyVector8D

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 15 / 35

Outline

• Basic ideas and the first example

• Defining new members and overriding old members

• Cascade inheritance and inheritance visibility

• One last discussion

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 16 / 35

Defining new members for the child

• A child may have its own

members.

– The parent has no way to

access a child’s member.

• Let’s define a setValue()

function without using arrays:

– Note that this should never
be a member of MyVector.

• We may also define new

member variables and static

members.

class MyVector2D : public MyVector

{

public:

 MyVector2D() { this-> n = 2; }

 MyVector2D(double m[]) : MyVector(2, m) {}

 void setValue(double i1, double i2);

};

void MyVector2D::setValue(double i1, double i2)

{

 if(this->m == NULL)

 this->m = new double[2];

 this->m[0] = i1;

 this->m[1] = i2;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 17 / 35

Function overriding

• We may also redefine existing

member inherited from a parent.

– This typically happens to

member functions.

– We say that we override the

member function.

• As an example, let’s override
print():

class MyVector2D : public MyVector

{

public:

 MyVector2D() { this-> n = 2; }

 MyVector2D(double m[]) : MyVector(2, m) {}

 void setValue(double i1, double i2);

 void print() const;

};

void MyVector2D::print() const

{

 cout << "2D: (";

 for(int i = 0; i < n - 1; i++)

 cout << m[i] << ", ";

 cout << m[n-1] << ")\n";

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 18 / 35

Function overriding

• To override a parent’s member function, define a child’s member function with

exactly the same function signature.

– A child object will invoke the child’s implementation.

– The parent’s implementation becomes hidden to a child object.

• Inside the child class, we may invoke a parent’s member function by using ::.

– Use it if consistency can be enhanced.

void MyVector2D::print() const

{

 cout << "2D: ";

 MyVector::print();

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 19 / 35

Overriding a constant function

• What will happen to the following

program?
class MyVector

{

 // ...

 void print() const;

};

class MyVector2D : public MyVector

{

 // ...

 void print() { MyVector::print(); }

 void print() const

 {

 cout << "2D: ";

 MyVector::print();

 }

};

int main()

{

 double i[3] = {1, 2};

 const MyVector2D v(i);

 v.print(); // ?

 MyVector2D u;

 u.setValue(3, 4);

 u.print(); // ?

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 20 / 35

Overriding a constant function

• How about this?

class MyVector

{

 // ...

 void print() const;

};

class MyVector2D : public MyVector

{

 // ...

 void print() { MyVector::print(); }

};

int main()

{

 double i[3] = {1, 2};

 const MyVector2D v(i);

 v.print(); // error!

 MyVector2D u;

 u.setValue(3, 4);

 u.print(); // ?

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 21 / 35

Overriding a member variable?

• Technically, we may override a member variable.

• For example, it seems to be a good idea to override n by a static constant:

class MyVector2D : public MyVector

{

private:

 static const int n;

public:

 MyVector2D() { // no this->n = 2; }

 MyVector2D(double m[]) : MyVector(2, m) {}

 // not overriding print();

 void setValue(double i1, double i2);

};

const int MyVector2D::n = 2;

int main()

{

 double i[3] = {1, 2};

 const MyVector2D v(i);

 v.print(); // good :)

 MyVector2D u;

 u.setValue(3, 4);

 u.print(); // bad :(

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 22 / 35

Overriding a member variable?

• As print() is not overridden, v and u invoke the parent’s implementation.

• The parent’s implementation uses MyVector::n.

– With the constructor with an array as a parameter, MyVector::n is set to 2.

– With the default constructor, MyVector::n is set to 0!

• Even though MyVector2D::n is set to 2, it is not used in MyVector::print().

• What if we also override print()?

void MyVector2D::print() const

{

 cout << "2D: (";

 for(int i = 0; i < n - 1; i++)

 cout << m[i] << ", ";

 cout << m[n-1] << ")\n"; // good :)

}

void MyVector2D::print() const

{

 cout << "2D: ";

 MyVector::print(); // bad :(

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 23 / 35

Overriding parent’s member

• In general, overriding a parent’s member variable is not suggested.

– Unless you really know what you are doing.

– After all, we will inheritance because we believe XXX is a OOO. A parent’s

member variable should be a part of a child!

• Overriding a parent’s member function is useful.

• What is the difference between function overloading and function overriding?

• Sometimes we override a member function for efficiency.

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 24 / 35

Outline

• Basic ideas and the first example

• Defining new members and overriding old members

• Cascade inheritance and inheritance visibility

• One last discussion

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 25 / 35

Cascade inheritance

• While a child inherits its parent, it may have a grandchild

inheriting itself.

• How may we create a class for two-dimensional

nonnegative vectors?

– {(x, y) | x ≧ 0, y ≧ 0}.

• A 2D nonnegative vector is a 2D vector!

• Let’s use inheritance again.

MyVector

MyVector2D

NNVector2D

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 26 / 35

Child class NNVector2D

• Defining NNVector2D is simple:

– Why not specifying a parent’s constructor?

– What happens when an NNVector2D object is created?

class NNVector2D : public MyVector2D

{

public:

 NNVector2D(); // do we need it?

 NNVector2D(double m[]);

 void setValue(double i1, double i2);

};

NNVector2D::NNVector2D()

{

}

NNVector2D::NNVector2D(double m[])

{

 this->m = new double[2];

 this->m[0] = m[0] >= 0 ? m[0] : 0;

 this->m[1] = m[1] >= 0 ? m[1] : 0;

}

void NNVector2D::setValue

 (double i1, double i2)

{

 if(this->m == NULL)

 this->m = new double[2];

 this->m[0] = i1 >= 0 ? i1 : 0;

 this->m[1] = i2 >= 0 ? i2 : 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 27 / 35

Child class NNVector2D

• How about

 or NNVector2D::NNVector2D(double m[])

{

 setValue(m[0], m[1]);

}

NNVector2D::NNVector2D(double m[]) : MyVector2D(2, m)

{

 if(m[0] < 0)

 this->m[0] = 0;

 if(m[1] < 0)

 this->m[1] = 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 28 / 35

Cascade inheritance

• In general, a class has all the protected and public members (excluding

constructors and destructors) of its predecessors.

• When an object is created:

– Constructors are invoked from the oldest class to the youngest class.

– Each constructor can specify a one-level-above constructor to invoke.

– Only one level!

• When an object is destroyed:

– Destructors are invoked from the youngest to the oldest.

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 29 / 35

Inheritance visibility

• Recall that we added the modifier public when MyVector2D inherits

MyVector and when NNVector2D inherits MyVector2D.

– This modifier specifies the inheritance visibility.

– It shows how this child modify the member visibility set by its predecessors.

• When one inherits something from its parent, it may narrow the visibility of

these members.

– E.g., if my parent set it to protected, I may set it to private.

– E.g., if my parent set it to private, I cannot set it to public.

• Why only narrowing?

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 30 / 35

Inheritance visibility

• In general, the visibility of a member in a child class depends on:

– The member visibility by the parent.

– The inheritance modifier.

• If you have no idea, just use public inheritance.

Member visibility

by the parent

Inheritance modifier

public protected private

public public protected private

protected protected protected private

private private private private

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 31 / 35

Multiple inheritance

• Suppose your friend argues:

– A two-dimensional

vector is a vector.

– A nonnegative vector is

a vector.

– A two-dimensional

nonnegative vector

should be the child of

them!

• Does that make sense?

MyVector

MyVector2D

NNVector2D

NNVector

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 32 / 35

Multiple inheritance

• In C++, multiple inheritance is allowed.

• However, it is not recommended!

– In some other object-oriented programming languages (e.g., Java), multiple

inheritance is forbidden.

• If there are multiple parents:

– Whose constructor/destructor goes first?

– Whose variables are stored in the front?

– May I inherit from my sister? May I inherit from my grandaunt?

• We also suggest you not to do multiple inheritance (even though it has been

used in C++ standard library).

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 33 / 35

Outline

• Basic ideas and the first example

• Defining new members and overriding old members

• Cascade inheritance and inheritance visibility

• One last discussion

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 34 / 35

A problem regarding the overridden =

• In fact, the definition of MyVector2D

contains a flaw.

– It is possible to have an object with
n = 2 but m = NULL.

• This is

inconsistent.

• How to fix it?

const MyVector& MyVector::operator=

 (const MyVector& v)

{

 if(this != &v)

 {

 if(this->n != v.n)

 {

 delete [] this->m;

 this->n = v.n;

 this->m = new double[this->n];

 }

 for(int i = 0; i < n; i++)

 this->m[i] = v.m[i];

 }

 return *this;

}

int main()

{

 double i[3] = {1, 2};

 NNVector2D v(i);

 NNVector2D u;

 u = v; // error

 u.print();

 return 0;

}

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Inheritance 35 / 35

A question regarding the overridden =

• Beside the previous issue, is there anything weird with the overridden =?

• The type of the parameter is MyVector, not MyVector2D!

– Has MyVector2D been casted to MyVector?

– May we cast MyVector to MyVector2D?

– Is casting between classes allowed if they are not parent and child?

– What if they are brothers are sisters (like MyVector2D and NNVector)?

– How may we utilize casting between classes?

• We will discuss these questions when we introduce polymorphism.

const MyVector& operator=(const MyVector& v);

Basic ideas and the first example Defining new and overriding old members

Cascade inheritance and visibility One last discussion

