
Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 1 / 29

IM 1003: Programming Design

Algorithms and Recursion

Ling-Chieh Kung

Department of Information Management

National Taiwan University

May 26, 2014

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 2 / 29

Introduction

• Some people say:

– Programming = Data structure + Algorithms.

– To design a program, choose data structures to store your data and choose

algorithms to process your data.

• Each of “data structures” and “algorithms” requires one (or more) courses.

– We will use two weeks to introduce them.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 3 / 29

Algorithms

• Today we talk about algorithms.

– In general, an algorithm is used to solve a problem.

– The most common strategy is to divide a problem into small pieces and then

solve those subproblems.

– We will introduce recursion, a way to solve a problem based on the

solution/outcome of subproblems.

• For a problem, there may be multiple algorithms.

– The first criterion, of course, is correctness.

– Time complexity is typically the next for judging correct algorithms.

• As examples, we introduce two specific problems: searching and sorting.

• Let’s watch a video!

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 4 / 29

Outline

• Recursion

• Searching

• Sorting

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 5 / 29

Recursive functions

• A function is recursive if it invokes itself (directly or indirectly).

• The processing of using recursive functions is called recursion.

• Why recursion?

– Many problems can be solved by dividing the original problem into several

smaller pieces of subproblems.

– Typically subproblems are quite similar to the original problem.

– With recursion, we write one function to solve the problem by using the

same function to solve subproblems.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 6 / 29

Finding a maximum

• Suppose we want to find a maximum number in an array A[1..n] (which means

A is of size n).

– Is there any subproblem whose solution can be utilitzed?

– Subproblem: Finding the maximum in an array with size smaller than n.

• A strategy:

– Subtask 1: First find a maximum of A[1..(n – 1)].

– Subtask 2: Then compare that number with A[n].

• How would you visualize this strategy?

• While subtask 2 is simple, subtask 1 is similar to the original task.

– It can be solved with the same strategy!

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 7 / 29

Finding a maximum

• Let’s try to implement the strategy.

• First, I know I need to write a function whose header is:

– This function returns the maximum among array elements 1 to len.

– I want this to happen, though at this moment I do not know how.

• Now let’s implement it:

– If the function really works, subtask 1 can be completed by invoking

– Subtask 2 is done by comparing subMax and array[len - 1].

double max(double array[], int len);

double subMax = max(array, len - 1);

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 8 / 29

Finding a maximum

• A (wrong) implementation:

• What will happen if we really

invoke this function?

– The program will not terminate!

– Even when len is 1 in an

invocation, we will still try to
invoke max(array, 0).

• For an array whose size is 1:

– That number is the maximum!

• With this, we can add a stopping

condition into our function.

double max(double array[], int len)

{

 double subMax = max(array, len - 1);

 if (array[len - 1] > subMax)

 return array[len - 1];

 else

 return subMax;

}

int main()

{

 double a[5] = {5, 7, 2, 4, 3};

 cout << max(a, 5);

 return 0;

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 9 / 29

• A correct implementation is:

• What is the outcome?

• Both else can be removed. Why?

Finding a maximum

double max (double array[], int len)

{

 if (len == 1) // stopping condition

 return array[0];

 else

 {

 // recursive call

 double subMax = max (array, len - 1);

 if (array[len - 1] > subMax)

 return array[len - 1];

 else

 return subMax;

 }

}

int main()

{

 double a[5] = {5, 7, 2, 4, 3};

 cout << max(a, 5);

 return 0;

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 10 / 29

Computing factorials

• How to write a function that computes the factorial of n?

– A subproblem: computing the factorial of n – 1.

– A strategy: First calculate the factorial of n – 1, then multiply it with n.

int factorial (int n)

{

 if (n == 1) // stopping condition

 return 1;

 else

 // recursive call

 return factorial (n - 1) * n;

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 11 / 29

Computing factorials

• When we invoke this function with argument 4:

• factorial(4)

 = factorial(3) * 4

 = (factorial(2) * 3) * 4

 = ((factorial(1) * 2) * 3) * 4

 = ((1 * 2) * 3) * 4

 = (2 * 3) * 4

 = 6 * 4

 = 24

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 12 / 29

Some remarks

• There must be a stopping condition in a recursive function. Otherwise, the

program will not terminate.

• In many cases, a recursive strategy can also be implemented with loops.

– E.g., writing a loop for finding a maximum and factorial.

– But sometimes it is hard to use loops to imitate a recursive function.

• Compared with an equivalent iterative function, a recursive implementation is

usually simpler and easier to understand.

• However, it generally uses more memory spaces and is more time-consuming.

– Invoking functions has some cost.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 13 / 29

Calculating Fibonacci numbers

• Write a recursive function to find the nth Fibonacci number.

– The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, …. Each number is the

sum of the two proceeding numbers.

– Finding the nth number can be done if we know the (n – 1)th and (n – 2)th

numbers.
int fib (int n)

{

 if (n == 1)

 return 1;

 else if (n == 2)

 return 1;

 else // two recursive calls

 return (fib (n-1) + fib (n-2));

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 14 / 29

Complexity issue of recursion

• In some cases, recursion is efficient enough.

– E.g., finding a maximum or calculating the factorial.

• In some cases, however, recursion can be very inefficient!

– E.g., Fibonacci.

• Let’s compare the efficiency of two different implementations.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 15 / 29

Complexity issue of recursion

• Two implementations: double fibRepetitive (int n)

{

 if (n == 1)

 return 1;

 else if (n == 2)

 return 1;

 double* fib = new double[n];

 fib[0] = 1;

 fib[1] = 1;

 for (int i = 2; i < n; i++)

 fib[i] = fib[i - 1] + fib[i - 2];

 double result = fib[n - 1];

 delete[] fib;

 return result;

}

int fib (int n)

{

 if (n == 1)

 return 1;

 else if (n == 2)

 return 1;

 else // two recursive calls

 return (fib (n-1) + fib (n-2));

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 16 / 29

Complexity issue of recursion

int main () // <iostream>, <ctime>, <iomanip>

{

 int n = 0;

 cin >> n;

 time_t stTime = 0, endTime = 0;

 double duration = 0;

 stTime = clock();

 cout << setprecision(100) << fibRepetitive(n) << endl; // algorithm 1

 endTime = clock();

 duration = static_cast<double>(endTime - stTime) / CLK_TCK;

 cout << "seconds for algorithm 1: " << setprecision(5) << duration << endl;

 stTime = clock();

 cout << setprecision(100) << fib(n) << endl; // algorithm 2

 endTime = clock();

 duration = static_cast<double>(endTime - stTime) / CLK_TCK;

 cout << "seconds for algorithm 2: " << setprecision(5) << duration << endl;

 return 0;

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 17 / 29

Power of recursion

• Though recursion is sometimes inefficient, typically implementation is easier.

• Let’s consider the classic example “Hanoi Tower”.

– There are three pillars and disks of different sizes which can slide onto any

pillar. Disc i is smaller than disc j if i < j.

– A large disc cannot be placed on top of a small disc.

• Initially, all discs are at pillar A. We want to move them to pillar C:

– Only one disk can be moved at a time.

– Each move consists of taking the upper disk from one of the stacks and

placing it on top of another stack.

• Let’s watch a video!

• How to solve the Hanoi Tower problem without recursion?

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 18 / 29

Power of recursion

• A recursive implementation:

• Is there a good way of solving the Hanoi Tower problem with loops?

void hanoi (char from, char via, char to, int disc)

{

 if (disc == 1)

 cout << "From " << from << " to " << to << endl;

 else

 {

 hanoi (from, to, via, disc - 1);

 cout << "From " << from << " to " << to << endl;

 hanoi (via, from, to, disc - 1);

 }

}

#include <iostream>

using namespace std;

int main ()

{

 int disc = 0; // number of discs

 cin >> disc;

 char a = 'A', b = 'B', c = 'C';

 hanoi (a, b, c, disc);

 return 0;

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 19 / 29

Outline

• Recursion

• Searching

• Sorting

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 20 / 29

Searching

• One fundamental task in computation is to search for an element.

– We want to determine whether an element exists in a set.

– If yes, we want to locate that element.

– E.g., looking for a string in an article.

• Here we will discuss how to search for an integer in an one-dimensional array.

• Whether the array is sorted makes a big difference.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 21 / 29

Searching

• Consider an integer array A[1..n] and an integer p.

• How to determine whether p exists in A?

• If so, where is it?

– Assume that we only need to find one p even if there are multiple.

• Suppose the array is unsorted.

• One of the most straightforward way is to apply a linear search.

– Compare each element with p one by one, from the first to the last.

– Whenever we find a match, report its location.

– Conclude p does not exist if we end up with nothing.

• The number of instructions we need to execute is roughly proportional to n.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 22 / 29

Binary search

• What if the array is sorted?

• We may still apply the linear search.

• However, we may improve the efficiency by implementing a binary search.

– First, we compare p with the median m (e.g., A[(n + 1) / 2] if n is odd).

– If p equals m, bingo!

– If p < m, we know p must exist in the first half of A if it exists.

– If p > m, we know p must exist in the second half of A if it exists.

– For the latter two cases, we will continue searching in the subarray.

• Let’s watch a video!

• Let’s read an example program.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 23 / 29

Linear search vs. binary search

• In binary search, the number of instructions to be executed is roughly

proportional to... what?

• So binary search is much more efficient than linear search!

– The difference is huge is the array is large.

– However, binary search is possible only if the array is sorted.

– Is it worthwhile to sort an array before we search it?

• It is natural to implement binary search with recursion.

– A subproblem is to search for the element in one half of the array.

• Binary search can also be implemented with repetition.

– Is it natural to do so?

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 24 / 29

Outline

• Recursion

• Searching

• Sorting

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 25 / 29

Sorting

• Given a one-dimensional integer array A of size n, how to sort it?

• Given numbers 6, 9, 3, 4, and 7, how would you sort them?

• Recall what you typically do when you play poker:

– First put the first number 6 aside.

– Compare the second number 9 with 6. Because 9 > 6, put 9 to the right of 6.

– Compare the third number 3 with the sorted list (6, 9). Because 3 < 6, put 3

to the left of 6.

– Compare 4 with (3, 6, 9). Because 3 < 4 < 6, insert 4 in between 3 and 6.

– Compare 7 with (3, 4, 6, 9). Because 6 < 7 < 9, insert 7 in between 6 and 9.

– The result is (3, 4, 6, 7, 9).

• Let’s watch a video!

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 26 / 29

Insertion sort

• The above algorithm is called insertion sort.

– The key is to maintain a sorted list.

– Then for each number in the unsorted list, insert it into the proper location

so that the sorted list remains sorted.

• How would you implement the insertion sort?

– Recursion or repetition?

– If recursion, what is your strategy?

• Let’s read an example program.

• Roughly how many instructions do we need for insertion sort?

• Does binary search help?

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 27 / 29

Mergesort (Merge sort)

• Insertion sort is simple and fast!

– Not really “fast”, but faster than many similar sorting algorithm.

– Because its idea and implementation is simple, it is faster than most

algorithms when the array size is small.

• Interestingly, there is another sorting algorithm:

– Its idea is somewhat similar to insertion sort.

– But it is significantly faster for large arrays!

• This algorithm is called mergesort.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 28 / 29

Mergesort (Merge sort)

• Recall that in an insertion sort, we need to insert one number into a sorted list

for many times.

• A key observation is that “inserting” another sorted list of size k into a sorted

list can be faster than inserting k separate numbers one by one!

– So such “inserting” is actually “merging”.

• Given an unsorted array, we will:

– First split the array into two parts, the first half and second half.

– Then sort each subarray.

– Finally, merge these two subarrays.

• Mergesort is perfect for recursion!

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM) Programming Design, Spring 2014 – Algorithms and Recursion 29 / 29

Mergesort (Merge sort)

• Interestingly, insertion sort is a special way of running mergesort.

– Not splitting the array into two halves.

– Instead, splitting it into A[1..n – 1] and A[n].

• Once we use the “smart split”, the efficiency is improved a lot!

– Insertion sort: Roughly proportional to n2.

– Merge sort: Roughly proportional to n log n.

• A simple observation can make a huge difference!

Recursion Searching Sorting

