
Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 1 / 63

Programming Design

Control Statements

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 2 / 63

Outline

• Preparations

– Preprocessors and namespaces

– Basic data types

• Selection

• Repetition

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 3 / 63

Preprocessors and namespaces

• Recall that our first C++ program was

• Now it is time to formally introduce the first two lines.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 4 / 63

Preprocessors

• Preprocessor commands, which
begins with #, performs some actions

before the compiler does the
translation.

• The include command here is to

include a header file:

– Files containing definitions of
common variables and functions.

– Written to be included by other
programs.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 5 / 63

Preprocessors

• #include <iostream>

– iostream is part of the C++

standard library. It provides
functionalities of data input and
output, e.g., cout and cin.

• Before the compilation, the compiler
looks for the iostream header file

and copy the codes therein to replace
this line.

– The same thing happens when
we include other header files.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 6 / 63

Including header files

• In this program, we include the iostream file for the cout object.

• With angle brackets (< and >), the compiler searches for “iostream” in the C++

standard library.

• We may define our own variables and functions into self-defined header files
and include them by ourselves:

– #include "C:\myHeader.h";

– Use double quotation marks instead of angle brackets.

– A path must be specified.

• We will not use self-defined header files in the first half of this semester.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 7 / 63

Namespaces

• What is a namespace?

• Suppose all roads in Taiwan have
different names. In this case, we do
not need to include the city/county
name in our address.

– This is why we do not need to
specify the district for an address
in the Taipei city.

– But we need to specify the district
for an address in the New Taipei
County.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 8 / 63

Namespaces

• A C++ namespace is a collection
(space) of names.

– For C++ variables, functions,
objects, etc.

– The objects cout, cin, and all

other items defined in the C++
standard library are defined in the
namespace std..

• By writing using namespace std;,

whenever the compiler sees a name, it
searches whether it is defined in this
program or the namespace std.

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 9 / 63

The scope resolution operator (::)

• Instead, we may specify the namespace of cout each time when we use it with
the scope resolution operation ::.

• Most programmers do not need to define their own namespaces.

– Unless you really want to name your own variable/object as cout.

– Typically a using namespace std; statement suffices.

#include <iostream>

int main()
{
std::cout << "Hello World! \n";
return 0;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 10 / 63

Outline

• Preparations

– Preprocessors and namespaces

– Basic data types

• Selection

• Repetition

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 11 / 63

Data types, literals, and variables

• Recall that in C++, each variable must be have its data type.

– It tells the system how to allocate memory spaces and how to interpret
those 0s and 1s stored there.

– It will also determine how operations are performed on the variable.

• Here we introduce basic (or built-in or primitive) data types.

– Those provided as part of the C++ standard.

– We will define our own data types later in this semester.

• Before we start, let’s know distinguish literals from variables.

– Literals: items whose contents are fixed, e.g., 3, 8.5, and “Hello world”.

– Variables: items whose values may change.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 12 / 63

Basic data types

• The ten C++ basic data types:

• Basic type names are all keywords.

• Number of bytes are compiler-dependent.

Category Type Bytes Type Bytes

Integers

bool 1 long 4

char 1 unsigned int 4

int 4 unsigned short 2

short 2 unsigned long 4

Fractional numbers float 4 double 8

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 13 / 63

int

• intmeans an integer.

• In Dev-C++ 5.9.2:

– An integer uses 4 bytes to store from –231 to 231 – 1.

– unsigned (4 bytes): from 0 to 232 – 1.

– short (2 bytes): from –32768 to 32767.

– long: the same as int.

• The C++ standard only requires a compiler to ensure that:

– The space for a long variable ≥ the space for an int one.

– The space for an int variable ≥ the space for a short one.

• short and long just create integers with different “lengths”.

– In most information systems this is not an issue.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 14 / 63

Limits of int

• The limits of C++ basic data types are stored in <climits>.

• For information, see, e.g., http://www.cplusplus.com/reference/climits/.

#include <iostream>
#include <climits>
using namespace std;

int main()
{
cout << INT_MIN << " " << INT_MAX << "\n";

return 0;
}

Preparations Selection Repetition

http://www.cplusplus.com/reference/climits/

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 15 / 63

sizeof

• We may use the sizeof operator to know the size of a variable or a type.

cout << "int " << sizeof(int) << "\n";
cout << "char " << sizeof(char) << "\n";
cout << "bool " << sizeof(bool) << "\n";

short s = 0;
cout << "short int " << sizeof(s) << "\n";
long l = 0;
cout << "long int " << sizeof(l) << "\n";

cout << "unsigned short int " << sizeof(unsigned short) << "\n";
cout << "unsigned int " << sizeof(unsigned) << "\n";
cout << "unsigned long int " << sizeof(unsigned long) << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 16 / 63

Overflow

• Be aware of overflow!

int i = 0;
short sGood = 32765;

while (i < 10)
{
short sBad = sGood + i;
cout << sGood + i << " " << sBad << "\n";
i = i + 1;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 17 / 63

Overflow

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 18 / 63

char

• charmeans a character.

– Use one byte (0 to 255) to store English characters, numbers, and symbols.

– Cannot store, e.g, Chinese characters.

• It is also an “integer”!

– These characters are encoded with the ASCII code in most PCs.

– ASCII = American Standard Code for Information Interchange.

– See the ASCII code mapping in your textbook.

– Some encoding:

Character A B Z a b z 0 1 9

Code 65 66 90 97 98 122 48 49 57

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 19 / 63

Literals in char type

• Use single quotation marks to make your char literal.

– char c = 'c';

– char c = 99;

• Some wrong ways of marking a character:

– Wrong: char c = "c";

– Wrong: char c = 'cc';

• More about charwill be discussed when we talk about casting and strings.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 20 / 63

float and double

• float and double are used to declare fractional numbers.

– Can be 5.0, -6.2, etc.

– Can be 16.25e2 (1.625 * 103 or 1625), 7.33e-3 (0.00733), etc.

• They follow the IEEE floating point standards.

– float uses 4 bytes to record values between 1.4 * 10–45 and 3.4 * 1038.

– doubleuses 8 bytes to record values between 4.9 * 10–324 and 1.8 * 10308.

• Dev-C++ (and some other compilers) offers long double as a 16 bytes

floating point data type.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 21 / 63

bool

• A bool variable uses 1 byte to record one Boolean

value: true or false.

– Two literals: true and false.

– 7 bits are wasted.

– All non-zero values are treated as true.

• bool variables play an important role in control

statements!

bool b = 0;
cout << b << "\n";

b = 1;
cout << b << "\n";

b = 10;
cout << b << "\n";

b = 0.1;
cout << b << "\n";

b = -1;
cout << b << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 22 / 63

Outline

• Preparations

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

• Scope of variables

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 23 / 63

• Last time we studied one kind of selection statement,
the if statement.

– condition returns a bool value.

– { }may be dropped if there is only one statement.

• In many cases, we hope that conditional on whether the
condition is true or false, we do different sets of
statements.

• This is done with the if-else statement.

– Do statements 1 if condition returns true.

– Do statements 2 if condition returns false.

• An elsemust have an associated if!

The if statement

if (condition)
{
statements

}

if(condition)
{

statements 1
}
else
{

statements 2
}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 24 / 63

• The income tax rate often varies according to the level of income.

– E.g., 2% for income below $10000 but 8% for the part above $10000.

• How to write a program to calculate the amount of income tax based on an input
amount of income?

– Which of the following two programs is correct (or better)?

Example of the if-else statement

double income = 0, tax = 0;

cout << "Please enter your income: ";
cin >> income;

if (income <= 10000)
tax = 0.02 * income;

if (income > 10000)
tax = 0.08 * (income - 10000) + 200;

cout << "Tax amount: $" << tax << "\n";

Preparations Selection Repetition

double income = 0, tax = 0;

cout << "Please enter your income: ";
cin >> income;

if (income <= 10000)
tax = 0.02 * income;

else
tax = 0.08 * (income - 10000) + 200;

cout << "Tax amount: $" << tax << "\n";

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 25 / 63

• An if or an if-else statement can be nested in
an if block.

– In this example, if both conditions are true,
statements A will be executed.

– If condition 1 is true but condition 2 is false,
statements B will be executed.

– If condition 1 is false, statements C will be
executed.

• An if or an if-else statement can be nested in an
else block.

• We may do this for any level of if or if-else.

Nested if-else statement

if(condition 1)
{
if(condition 2)
{
statements A

}
else
{
statements B

}
}
else
{
statements C

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 26 / 63

Dangling if-else

• What does this mean?

• In the current C++ standard,
it is actually:

if(a == 10)
if(b == 10)
cout << "a and b are both ten.\n";

else
cout << "a is not ten.\n";

if(a == 10)
{
if(b == 10)
cout << "a and b are both ten.\n";

else
cout << "a is not ten.\n";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 27 / 63

Dangling if-else

• When we drop { }, our programs may be grammatically ambiguous.

• In the field of Programming Languages, it is called the dangling problem.

• To handle this, C++ defines that “one else will be paired to the closest if that
has not been paired with an else.”

• Good programming style:

– Drop { } only when you know what you are doing.

– Align your { }.

– Indent your codes properly.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 28 / 63

The else-if statement

• An if-else statement allows us to respond

to a binary condition.

• When we want to respond to a ternary
condition, we may put an if-else
statement in an else block:

• For this situation, people typically drop { }
and put the second if behind else to create
an else-if statement:

if (a < 10)
cout << "a < 10.";

else
{
if (a > 10)
cout << "a > 10.";

else
cout << "a == 10.";

}

if (a < 10)
cout << "a < 10.";

else if (a > 10)
cout << "a > 10.";

else
cout << "a == 10.";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 29 / 63

The else-if statement

• An else-if statement is generated by using
two nested if-else statements.

• It is logically fine if we do not use else-if.

• However, if we want to respond to more than
three conditions, using else-if greatly

enhances the readability of our program.

• Another selection statement, switch-case,

is (sometimes) more appropriate for a
condition that has many realizations and will
be introduced later.

if (month == 1)
cout << "31";

else if(month == 2)
cout << "28";

else if(month == 3)
cout << "31";

else if(month == 4)
cout << "30";

else if(month == 5)
cout << "31";

// ...
else if(month == 11)
cout << "30";

else
cout << "31";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 30 / 63

Outline

• Preparations

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

• Scope of variables

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 31 / 63

Logic operators

• In some cases, the condition for an if statement is complicated.

– If I love a girl and she also loves me, we will fall in love.

– If I love a girl but she does not love me, my heart will be broken.

• It will make our life easier to use logic operators to combine multiple
conditions into one condition.

• We have three logic operators:

– &&: and.

– ||: or.

– !: not.

• These operators have their aliases (and, or, and not). For the aliases of many

operators, see http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B.

Preparations Selection Repetition

http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 32 / 63

Logic operators: and

• The “and” operator operates on two conditions.

– Each condition is an operand.

• It returns true if both conditions are true. Otherwise it returns false.

– (3 > 2) && (2 > 3) returns false.

– (3 > 2) && (2 > 1) returns true.

• When we use it in an if statement, the grammar is:

if(condition 1 && condition 2)
{

statements
}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 33 / 63

Logic operators: and

• An “and” operation can replace a nested if statement.

– The nested if statement

is equivalent to

if (a > 10)
{
if (b > 10)
cout << "a is between 10 and 20;";

}

if (a > 10 && b > 10)
cout << "a is between 10 and 20;";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 34 / 63

Logic operators: or

• The “or” operator returns true if at least one of the two conditions is true.
Otherwise it returns false.

– (3 > 2) || (2 > 3) returns true.

– (3 < 2) || (2 < 1) returns false.

• When the or operator is used in an if statement, the grammar is

If(condition 1 || condition 2)
{
statements

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 35 / 63

• The “not” operator returns the opposite of the condition.

– !(2 > 3) returns true.

– !(2 > 1) returns false.

• It is used when we have statements only in the else block:

– The following two programs are equivalent:

Logic operator: not

if(condition)
;

else
{
statements

}

if(!condition)
{
statements;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 36 / 63

Associativity and precedence

• The && and || operators both associate the

two conditions from left to right.

• It is possible that the second condition is not
evaluated at all.

– If evaluating the first one is enough.

• What will be the outputs?

• There is a precedence rule for operators.

– You may find the rule in the textbook.

– You do not need to memorize them: Just
use parentheses.

int a = 0, b = 0;

if ((a > 10) && (b = 1))
;

cout << b << "\n";

if ((a < 10) || (b = 1))
;

cout << b << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 37 / 63

Outline

• Preparations

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 38 / 63

• The second way of implementing a selection is
to use a switch-case statement.

• It is particularly useful for responding to
multiple values of a single operation.

• For the operation:

– It can contain only a single operand.

– It must return an integer (int, bool,
char, etc.).

The switch-case statement

switch (operation)
{
case value 1:
statements
break;

case value 2:
statements
break;

...
default:
statements
break;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 39 / 63

• After each case, there is a value.

– If the returned value of the operation
equals that value, those statements in the
case block will be executed.

– No curly brackets are needed for blocks.

– A colon is needed after the value.

• A breakmarks the end of a block.

– The break of the last section is optional.

• Restrictions on those values:

– Cannot be (non-constant) variables.

– Must be different integers.

The switch-case statement

switch (operation)
{
case value 1:
statements
break;

case value 2:
statements
break;

...
default:
statements
break;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 40 / 63

• Dropping a break may be useful:• What will happen if we enter 10?

The break statement

int a;
cin >> a;

switch(a)
{
case 10:
cout << "a is ten.";

case 20:
cout << "a is twenty.";
break;

}

char a;
cin >> a;

switch(a)
{
case 'c':
case 'C':
cout << "This is c or C.";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 41 / 63

The default block

• The default block will be executed if
no case value matches the operation’s

return value.

• You may add a break at the end of
default or not. It does not matter.

int a;
cin >> a;

switch(a)
{
case 10:
cout << "a is ten.";
break;

case 20:
cout << "a is twenty.";
break;

default:
cout << a << "\n";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 42 / 63

Outline

• Preparations

• Selection

• Repetition

– while and do-while

– for

– Something else

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 43 / 63

The while statement

• In many cases, we want to repeatedly execute a set of codes.

• Last time we studied one repetition statement, the while statement.

• What do these programs do?

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

char a = 0;
// do something
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
// do something
cout << "Exit? ";
cin >> a;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 44 / 63

Modifying loop counters

• Very often we need to add 1 to or subtract 1 from a loop counter.

• Using the unary increment/decrement operator ++/-- can be more convenient.

• Binary self-assigning operators (e.g., +=) sometimes help.

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i++;

}

cout << sum << "\n";

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i += 1;

}

cout << sum << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 45 / 63

Increment/decrement operators

• In C++, the increment and decrement operators are specific:

– For modifying i, i++ has the same effect as i = i + 1.

– For modifying i, i–– has the same effect as i = i – 1.

• They can be applied on all basic data types.

– But we should only apply them on integers.

• Typically using them is faster than using the corresponding addition/subtraction
and assignment operation.

int i = 10;
i++; // i becomes 11
i--; // i becomes 10

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 46 / 63

Increment/decrement operators

• Both can be put at the left or the right of the operand.

– This changes the order of related operations.

– i++: returns the value of i, and then increment i.

– ++i: increments i, and then returns the incremented value of i.

• What are the values of a and b in these statements?

• i-- and --iwork in the same way.

• So is i = i + 1 equivalent to i++ or ++i?

• Do not make your program hard to understand!

– What is a = b+++++c?

a = 5; b = a++; a = 5; b = ++a;

c++;
a = b + c;
b++;

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 47 / 63

Self-assigning operations

• In many cases, an assignment operation is self-assigning.

– a = a + b, a = a - 20, etc.

• For each of the five arithmetic operators +, -, *, /, and %, there is a

corresponding self-assignment operator.

– a += b means a = a + b.

– a *= b - 2 means a = a * (b – 2) (not a = a * b – 2).

• Typically a += b is faster than a = a + b, etc.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 48 / 63

• Recall that we validated a user input with a
while statement:

• One drawback of this program is that a set of
same codes must be written twice.

– Inconsistency may then arise.

• To avoid such a situation, we may use a do-
while statement.

The do-while statement

char a = 0;
// do something
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
// do something
cout << "Exit? ";
cin >> a;

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 49 / 63

• The grammar:

• The revision of the previous program:

• In any case, statements in a do-while

loop must be executed at least once.

• The semicolon is needed.

– Why?

The do-while statement

do
{
statements

} while (operation);

char a = 0;

do
{
// do something
cout << "Exit? ";
cin >> a;

} while (a != 'y' && a != 'Y');

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 50 / 63

Outline

• Preparations

• Selection

• Repetition

– while and do-while

– for

– Something else

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 51 / 63

The for statement

• Another way of implementing a loop is to use a for

statement.

– The curly brackets can be dropped if there is only
one statement.

for (init; cond; some)
{
statements

}

True
init cond statements some

Start End

False

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 52 / 63

The for statement

• You need those two “;” in the ().

• The typical way of using a for statement is:

– init: Initialize a counter variable here.

– cond: Set up the condition on the counter variable for the loop to continue.

– some: Modify (mostly increment or decrement) the counter variable.

– statements: The things that we really want to do.

for (init; cond; some)
{
statements

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 53 / 63

• Let’s calculate the sum of 1 + 2 + … + 100:

– We used while. How about for?

• To use for:

– We declare and initialize the counter
variable i: int i = 1.

– We check the loop condition: i <= 1000.

– We run the statement: sum = sum + i;.

– We then increment the counter: i++. i
becomes 2.

– Then we go back to check the condition,
and so on, and so on.

for vs. while

int sum = 0;
for (int i = 1; i <= 100; i++)
sum = sum + i;

cout << sum;

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 54 / 63

Multi-counter for loops

• Inside one for statement:

– You may initialize multiple counters at the same time.

– You may also check multiple counters at the same time.

– You may also modify multiple counters at the same time.

• Use “,” to separate operations on multiple counters.

• If any of the conditions is false, the loop will be terminated.

• As an example:

• Try to find alternatives before you use it.

for(int i = 0, j = 0; i < 10, j > -5; i++, j--)
cout << i << " " << j << "\n";

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 55 / 63

Good programming style

• When you need to execute a loop for a fixed number of iterations, use a for

statement with a counter declared only for the loop.

– This also applies if you know the maximum number of iterations.

– This avoids potential conflicts on variable names.

– See “scope of variables” below.

• Use the loop that makes your program the most readable.

• Typically only the counter variable enters the () of a for statement.

• You may use double or float for a counter, but this is not recommended.

– Use integer only!

• Drop { } only when you know what you are doing.

• Align your { }. Indent your codes properly.

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 56 / 63

Scope of variables

• A variable has its scope
(or life cycle).

– Where it is “alive”
and can be accessed.

• For all the variables you
have seen so far, they
live only in the block
in which they are
declared.

if (...)
{
int a = 10;

}
a = 20; // error

while (...)
{
int a = 10;

}
a = 20; // error

for (int i = 0; i < 10; i++)
{
;

}
i = 20; // error

int i;
for (i = 0; i < 10; i++)
{
;

}
i = 20; // ok!

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 57 / 63

Scope of variables

• Two variables declared in the same level
cannot have the same variable name.

– One main reason to use for.

• However, this is allowed if one is declared
in an inner block.

– In the inner block, after the same
variable name is used to declare a new
variable, it “replaces” the original one.

– However, its life ends when the inner
block ends.

int a = 0;
if (a == 0)
{
cout << a << "\n"; // ?
int a = 10;
cout << a << "\n"; // ?

}
cout << a << "\n"; // ?

int i = 0;
for (; i < 10; i++)
{
cout << i << " ";

}
// ...
int i = 0; // error!
for (; i > -10; i--)
{
cout << i << " ";
}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 58 / 63

Outline

• Preparations

• Selection

• Repetition

– while and do-while

– for

– Something else

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 59 / 63

• Like the selection process, loops can also be nested.

– Outer loop, inner loop, most inner loop, etc.

• Nested loops are not always necessary, but they can be helpful.

– Particularly when we need to handle a multi-dimensional case.

• E.g., write a program to output some integer points on an (x, y)-plane like this:

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

• This can still be done with only
one level of loop. but using a
nested loop is much easier.

Nested loops

for (int x = 1; x <= 3; x++)
{
for (int y = 1; y <= 3; y++)
cout << "(" << x << ", " << y << ") ";

cout << " ";
}
// where to output a new line character?

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 60 / 63

Infinite loops

• An infinite loop is a loop that does not terminate.

• Usually an infinite loop is a logical error made by the programmer.

– When it happens, check your program.

• When your program does not stop, press <Ctrl + C>.

int a = 0;
while(a >= 0)
a++;

while(true)
cout << 1;

for(; ;)
cout << 1;

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 61 / 63

• When we implement a repetition process, sometimes we need to further change
the flow of execution of the loop.

• A break statement brings us to exit the loop immediately.

• When continue is executed, statements after it in the loop are skipped.

– The looping condition will be checked immediately.

– If it is satisfied, the loop starts from the beginning again.

• How to write a program to print out all integers from 1 to 100 except multiples
of 10?

break and continue

for (int a = 1; a <= 100; a++)
{
if (a % 10 == 0)
continue;

cout << a << " ";
}

for (int a = 1; a <= 100; a++)
{
if(a % 10 != 0)
cout << a << " ";

}

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 62 / 63

break and continue

• The effect of break and continue is just

on the current level.

– If a break is used in an inner loop, the

execution jumps to the outer loop.

– If a continue is used in an inner loop,

the execution jumps to the condition
check of the inner loop.

• What will be printed out at the end of this
program?

int a = 0, b = 0;
while(a <= 10)
{
while(b <= 10)
{
if(b == 5)
break;

cout << a * b << "\n";
b++;

}
a++;

}
cout << a << "\n"; // ?

Preparations Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 63 / 63

Infinite loops with a break

• We may intentionally create an infinite loop and terminate it with a break.

– E.g., we may wait for an “exit” input and then leave the loop with a break.

Preparations Selection Repetition

char a = 0;
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
cout << "Exit? ";
cin >> a;

}

char a = 0;
cout << "Exit? ";
cin >> a;

while (true)
{
cout << "Exit? ";
cin >> a;
if (a == 'y' || a == 'Y')
break;

}

	Programming Design�Control Statements
	Outline
	Preprocessors and namespaces
	Preprocessors
	Preprocessors
	Including header files
	Namespaces
	Namespaces
	The scope resolution operator (::)
	Outline
	Data types, literals, and variables
	Basic data types
	int
	Limits of int
	sizeof
	Overflow
	Overflow
	char
	Literals in char type
	float and double
	bool
	Outline
	The if statement
	Example of the if-else statement
	Nested if-else statement
	Dangling if-else
	Dangling if-else
	The else-if statement
	The else-if statement
	Outline
	Logic operators
	Logic operators: and
	Logic operators: and
	Logic operators: or
	Logic operator: not
	Associativity and precedence
	Outline
	The switch-case statement
	The switch-case statement
	The break statement
	The default block
	Outline
	The while statement
	Modifying loop counters
	Increment/decrement operators
	Increment/decrement operators
	Self-assigning operations
	The do-while statement
	The do-while statement
	Outline
	The for statement
	The for statement
	for vs. while
	Multi-counter for loops
	Good programming style
	Scope of variables
	Scope of variables
	Outline
	Nested loops
	Infinite loops
	break and continue
	break and continue
	Infinite loops with a break

