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Preprocessors and namespaces

• Recall that our first C++ program was

• Now it is time to formally introduce the first two lines. 

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}
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Preprocessors

• Preprocessor commands, which 
begins with #, performs some actions 

before the compiler does the 
translation. 

• The include command here is to 

include a header file:

– Files containing definitions of 
common variables and functions. 

– Written to be included by other 
programs.  

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}
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Preprocessors

• #include <iostream>

– iostream is part of the C++ 

standard library. It provides 
functionalities of data input and 
output, e.g., cout and cin. 

• Before the compilation, the compiler 
looks for the iostream header file 

and copy the codes therein to replace 
this line.

– The same thing happens when 
we include other header files. 

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}
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Including header files

• In this program, we include the iostream file for the cout object. 

• With angle brackets (< and >), the compiler searches for “iostream” in the C++ 

standard library. 

• We may define our own variables and functions into self-defined header files 
and include them by ourselves: 

– #include "C:\myHeader.h";

– Use double quotation marks instead of angle brackets. 

– A path must be specified. 

• We will not use self-defined header files in the first half of this semester. 
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Namespaces

• What is a namespace? 

• Suppose all roads in Taiwan have 
different names. In this case, we do 
not need to include the city/county 
name in our address. 

– This is why we do not need to 
specify the district for an address 
in the Taipei city. 

– But we need to specify the district 
for an address in the New Taipei 
County. 

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}
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Namespaces

• A C++ namespace is a collection
(space) of names.

– For C++ variables, functions, 
objects, etc. 

– The objects cout, cin, and all 

other items defined in the C++ 
standard library are defined in the 
namespace std.. 

• By writing using namespace std;, 

whenever the compiler sees a name, it 
searches whether it is defined in this 
program or the namespace std. 

#include <iostream>
using namespace std;

int main()
{
cout << "Hello World! \n";
return 0;

}
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The scope resolution operator (::)

• Instead, we may specify the namespace of cout each time when we use it with 
the scope resolution operation ::. 

• Most programmers do not need to define their own namespaces. 

– Unless you really want to name your own variable/object as cout. 

– Typically a using namespace std; statement suffices.

#include <iostream>

int main()
{
std::cout << "Hello World! \n";
return 0;

}
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Data types, literals, and variables

• Recall that in C++, each variable must be have its data type. 

– It tells the system how to allocate memory spaces and how to interpret
those 0s and 1s stored there. 

– It will also determine how operations are performed on the variable. 

• Here we introduce basic (or built-in or primitive) data types. 

– Those provided as part of the C++ standard. 

– We will define our own data types later in this semester. 

• Before we start, let’s know distinguish literals from variables. 

– Literals: items whose contents are fixed, e.g., 3, 8.5, and “Hello world”. 

– Variables: items whose values may change. 
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Basic data types

• The ten C++ basic data types:

• Basic type names  are all keywords. 

• Number of bytes are compiler-dependent. 

Category Type Bytes Type Bytes

Integers

bool 1 long 4

char 1 unsigned int 4

int 4 unsigned short 2

short 2 unsigned long 4

Fractional numbers float 4 double 8
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int

• intmeans an integer.

• In Dev-C++ 5.9.2: 

– An integer uses 4 bytes to store from –231 to 231 – 1. 

– unsigned (4 bytes): from 0 to 232 – 1.

– short (2 bytes): from –32768 to 32767.

– long: the same as int. 

• The C++ standard only requires a compiler to ensure that: 

– The space for a long variable ≥ the space for an int one. 

– The space for an int variable ≥ the space for a short one. 

• short and long just create integers with different “lengths”. 

– In most information systems this is not an issue. 
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Limits of int

• The limits of C++ basic data types are stored in <climits>.

• For information, see, e.g., http://www.cplusplus.com/reference/climits/.  

#include <iostream>
#include <climits> 
using namespace std; 

int main()
{
cout << INT_MIN << " " << INT_MAX << "\n";

return 0; 
}
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sizeof

• We may use the sizeof operator to know the size of a variable or a type. 

cout << "int " << sizeof(int) << "\n";
cout << "char " << sizeof(char) << "\n";
cout << "bool " << sizeof(bool) << "\n";

short s = 0;
cout << "short int " << sizeof(s) << "\n";
long l = 0;
cout << "long int " << sizeof(l) << "\n";

cout << "unsigned short int " << sizeof(unsigned short) << "\n";
cout << "unsigned int " << sizeof(unsigned) << "\n";
cout << "unsigned long int " << sizeof(unsigned long) << "\n";
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Overflow

• Be aware of overflow! 

int i = 0;
short sGood = 32765;

while (i < 10)
{
short sBad = sGood + i;
cout << sGood + i << " " << sBad << "\n";
i = i + 1;

}
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Overflow
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char

• charmeans a character.

– Use one byte (0 to 255) to store English characters, numbers, and symbols. 

– Cannot store, e.g, Chinese characters. 

• It is also an “integer”! 

– These characters are encoded with the ASCII code in most PCs. 

– ASCII = American Standard Code for Information Interchange. 

– See the ASCII code mapping in your textbook. 

– Some encoding: 

Character A B Z a b z 0 1 9

Code 65 66 90 97 98 122 48 49 57

Preparations Selection Repetition



Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 19 / 63

Literals in char type

• Use single quotation marks to make your char literal. 

– char c = 'c';

– char c = 99; 

• Some wrong ways of marking a character: 

– Wrong: char c = "c";

– Wrong: char c = 'cc';

• More about charwill be discussed when we talk about casting and strings. 
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float and double

• float and double are used to declare fractional numbers. 

– Can be 5.0, -6.2, etc. 

– Can be 16.25e2 (1.625 * 103 or 1625), 7.33e-3 (0.00733), etc. 

• They follow the IEEE floating point standards. 

– float uses 4 bytes to record values between 1.4 * 10–45 and 3.4 * 1038. 

– doubleuses 8 bytes to record values between 4.9 * 10–324 and 1.8 * 10308. 

• Dev-C++ (and some other compilers) offers long double as a 16 bytes 

floating point data type. 
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bool

• A bool variable uses 1 byte to record one Boolean 

value: true or false.

– Two literals: true and false. 

– 7 bits are wasted. 

– All non-zero values are treated as true. 

• bool variables play an important role in control 

statements! 

bool b = 0;
cout << b << "\n"; 

b = 1; 
cout << b << "\n"; 

b = 10; 
cout << b << "\n"; 

b = 0.1; 
cout << b << "\n"; 

b = -1;
cout << b << "\n"; 
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• Last time we studied one kind of selection statement, 
the if statement. 

– condition returns a bool value. 

– { }may be dropped if there is only one statement. 

• In many cases, we hope that conditional on whether the 
condition is true or false, we do different sets of 
statements. 

• This is done with the if-else statement. 

– Do statements 1 if condition returns true. 

– Do statements 2 if condition returns false. 

• An elsemust have an associated if! 

The if statement

if (condition)
{
statements

}

if(condition)
{

statements 1
}
else
{

statements 2
}
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• The income tax rate often varies according to the level of income. 

– E.g., 2% for income below $10000 but 8% for the part above $10000. 

• How to write a program to calculate the amount of income tax based on an input 
amount of income? 

– Which of the following two programs is correct (or better)?

Example of the if-else statement

double income = 0, tax = 0; 

cout << "Please enter your income: ";
cin >> income;

if (income <= 10000)
tax = 0.02 * income;

if (income > 10000)
tax = 0.08 * (income - 10000) + 200;

cout << "Tax amount: $" << tax << "\n";

Preparations Selection Repetition
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• An if or an if-else statement can be nested in 
an if block. 

– In this example, if both conditions are true, 
statements A will be executed. 

– If condition 1 is true but condition 2 is false, 
statements B will be executed. 

– If condition 1 is false, statements C will be 
executed. 

• An if or an if-else statement can be nested in an 
else block. 

• We may do this for any level of if or if-else.

Nested if-else statement

if(condition 1)
{
if(condition 2)
{
statements A

}
else
{
statements B

}
}
else
{
statements C

}
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Dangling if-else

• What does this mean? 

• In the current C++ standard, 
it is actually: 

if(a == 10)
if(b == 10)
cout << "a and b are both ten.\n";

else
cout << "a is not ten.\n";

if(a == 10)
{
if(b == 10)
cout << "a and b are both ten.\n";

else
cout << "a is not ten.\n";

}
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Dangling if-else

• When we drop { }, our programs may be grammatically ambiguous. 

• In the field of Programming Languages, it is called the dangling problem.

• To handle this, C++ defines that “one else will be paired to the closest if that 
has not been paired with an else.”

• Good programming style:

– Drop { } only when you know what you are doing. 

– Align your { }. 

– Indent your codes properly.  
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The else-if statement

• An if-else statement allows us to respond 

to a binary condition. 

• When we want to respond to a ternary 
condition, we may put an if-else
statement in an else block: 

• For this situation, people typically drop { }
and put the second if behind else to create 
an else-if statement: 

if (a < 10)
cout << "a < 10.";

else 
{
if (a > 10)
cout << "a > 10.";

else
cout << "a == 10.";

}

if (a < 10)
cout << "a < 10.";

else if (a > 10)
cout << "a > 10.";

else
cout << "a == 10.";
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The else-if statement

• An else-if statement is generated by using 
two nested if-else statements. 

• It is logically fine if we do not use else-if. 

• However, if we want to respond to more than 
three conditions, using else-if greatly 

enhances the readability of our program. 

• Another  selection statement, switch-case, 

is (sometimes) more appropriate for a 
condition that has many realizations and will 
be introduced later. 

if (month == 1)
cout << "31";

else if(month == 2)
cout << "28";

else if(month == 3)
cout << "31";

else if(month == 4)
cout << "30";

else if(month == 5)
cout << "31";

// ...
else if(month == 11)
cout << "30";

else
cout << "31";
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Logic operators

• In some cases, the condition for an if statement is complicated. 

– If I love a girl and she also loves me, we will fall in love. 

– If I love a girl but she does not love me, my heart will be broken.  

• It will make our life easier to use logic operators to combine multiple 
conditions into one condition. 

• We have three logic operators: 

– &&: and. 

– ||: or. 

– !: not. 

• These operators have their aliases (and, or, and not). For the aliases of many 

operators, see http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B.
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Logic operators: and

• The “and” operator operates on two conditions.

– Each condition is an operand. 

• It returns true if both conditions are true. Otherwise it returns false. 

– (3 > 2) && (2 > 3) returns false. 

– (3 > 2) && (2 > 1) returns true. 

• When we use it in an if statement, the grammar is: 

if(condition 1 && condition 2)
{

statements
}
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Logic operators: and

• An “and” operation can replace a nested if statement. 

– The nested if statement

is equivalent to

if (a > 10)
{
if (b > 10)
cout << "a is between 10 and 20;";

}

if (a > 10 && b > 10)
cout << "a is between 10 and 20;";
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Logic operators: or

• The “or” operator returns true if at least one of the two conditions is true. 
Otherwise it returns false. 

– (3 > 2) || (2 > 3) returns true. 

– (3 < 2) || (2 < 1) returns false. 

• When the or operator is used in an if statement, the grammar is

If(condition 1 || condition 2)
{
statements

}
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• The “not” operator returns the opposite of the condition. 

– !(2 > 3) returns true. 

– !(2 > 1) returns false. 

• It is used when we have statements only in the else block:

– The following two programs are equivalent: 

Logic operator: not

if(condition)
;

else
{
statements

}

if(!condition)
{
statements;

}
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Associativity and precedence

• The && and || operators both associate the 

two conditions from left to right. 

• It is possible that the second condition is not 
evaluated at all. 

– If evaluating the first one is enough. 

• What will be the outputs? 

• There is a precedence rule for operators. 

– You may find the rule in the textbook. 

– You do not need to memorize them: Just 
use parentheses. 

int a = 0, b = 0;

if ((a > 10) && (b = 1))
;  

cout << b << "\n"; 

if ((a < 10) || (b = 1))
; 

cout << b << "\n"; 
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• The second way of implementing a selection is 
to use a switch-case statement. 

• It is particularly useful for responding to 
multiple values of a single operation. 

• For the operation:

– It can contain only a single operand. 

– It must return an integer (int, bool, 
char, etc.). 

The switch-case statement

switch (operation)
{
case value 1:
statements
break;

case value 2:
statements
break;

...
default:
statements
break;

}
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• After each case, there is a value. 

– If the returned value of the operation 
equals that value, those statements in the 
case block will be executed.

– No curly brackets are needed for blocks. 

– A colon is needed after the value. 

• A breakmarks the end of a block. 

– The break of the last section is optional. 

• Restrictions on those values: 

– Cannot be (non-constant) variables. 

– Must be different integers.  

The switch-case statement

switch (operation)
{
case value 1:
statements
break;

case value 2:
statements
break;

...
default:
statements
break;

}
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• Dropping a break may be useful:• What will happen if we enter 10? 

The break statement

int a;
cin >> a;

switch(a)
{
case 10:
cout << "a is ten.";

case 20:
cout << "a is twenty.";
break;

}

char a;
cin >> a;

switch(a)
{
case 'c':
case 'C':
cout << "This is c or C.";

}
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The default block

• The default block will be executed if 
no case value matches the operation’s 

return value.  

• You may add a break at the end of
default or not. It does not matter. 

int a;
cin >> a;

switch(a)
{
case 10:
cout << "a is ten.";
break;

case 20:
cout << "a is twenty.";
break;

default:
cout << a << "\n";

}
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The while statement

• In many cases, we want to repeatedly execute a set of codes. 

• Last time we studied one repetition statement, the while statement. 

• What do these programs do? 

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

char a = 0;
// do something
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
// do something
cout << "Exit? ";
cin >> a;

}
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Modifying loop counters

• Very often we need to add 1 to or subtract 1 from a loop counter. 

• Using the unary increment/decrement operator ++/-- can be more convenient. 

• Binary self-assigning operators (e.g., +=) sometimes help. 

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i++;

}

cout << sum << "\n";

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i += 1;

}

cout << sum << "\n";
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Increment/decrement operators

• In C++, the increment and decrement operators are specific:

– For modifying i, i++ has the same effect as i = i + 1.

– For modifying i, i–– has the same effect as i = i – 1.

• They can be applied on all basic data types. 

– But we should only apply them on integers. 

• Typically using them is faster than using the corresponding addition/subtraction 
and assignment operation. 

int i = 10;
i++; // i becomes 11
i--; // i becomes 10

Preparations Selection Repetition



Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 46 / 63

Increment/decrement operators

• Both can be put at the left or the right of the operand. 

– This changes the order of related operations. 

– i++: returns the value of i, and then increment i. 

– ++i: increments i, and then returns the incremented value of i. 

• What are the values of a and b in these statements? 

• i-- and --iwork in the same way. 

• So is i = i + 1 equivalent to i++ or ++i?

• Do not make your program hard to understand! 

– What  is a = b+++++c? 

a = 5; b = a++; a = 5; b = ++a;

c++; 
a = b + c; 
b++;
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Self-assigning operations

• In many cases, an assignment operation is self-assigning. 

– a = a + b, a = a - 20, etc. 

• For each of the five arithmetic operators +, -, *, /, and %, there is a 

corresponding self-assignment operator. 

– a += b means a = a + b.

– a *= b - 2 means a = a * (b – 2) (not a = a * b – 2). 

• Typically a += b is faster than a = a + b, etc. 
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• Recall that we validated a user input with a 
while statement: 

• One drawback of this program is that a set of 
same codes must be written twice. 

– Inconsistency may then arise. 

• To avoid such a situation, we may use a do-
while statement. 

The do-while statement

char a = 0;
// do something
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
// do something
cout << "Exit? ";
cin >> a;

}
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• The grammar: 

• The revision of the previous program: 

• In any case, statements in a do-while 

loop must be executed at least once. 

• The semicolon is needed.

– Why?

The do-while statement

do
{
statements

} while (operation);

char a = 0;

do
{
// do something
cout << "Exit? ";
cin >> a;

} while (a != 'y' && a != 'Y');
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The for statement

• Another way of implementing a loop is to use a for

statement. 

– The curly brackets can be dropped if there is only 
one statement. 

for (init; cond; some)
{
statements

}

True
init cond statements some

Start End

False
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The for statement

• You need those two “;” in the ( ).

• The typical way of using a for statement is: 

– init: Initialize a counter variable here. 

– cond: Set up the condition on the counter variable for the loop to continue. 

– some: Modify (mostly increment or decrement) the counter variable. 

– statements: The things that we really want to do. 

for (init; cond; some)
{
statements

}

Preparations Selection Repetition



Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 53 / 63

• Let’s calculate the sum of 1 + 2 + … + 100:

– We used while. How about for? 

• To use for: 

– We declare and initialize the counter 
variable i: int i = 1. 

– We check the loop condition: i <= 1000. 

– We run the statement: sum = sum + i;. 

– We then increment the counter: i++. i
becomes 2. 

– Then we go back to check the condition, 
and so on, and so on. 

for vs. while

int sum = 0;
for (int i = 1; i <= 100; i++)
sum = sum + i;

cout << sum;

int sum = 0;
int i = 1;

while (i <= 100)
{
sum = sum + i;
i = i + 1;

}

cout << sum << "\n";

Preparations Selection Repetition



Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 54 / 63

Multi-counter for loops

• Inside one for statement: 

– You may initialize multiple counters at the same time. 

– You may also check multiple counters at the same time. 

– You may also modify multiple counters at the same time.

• Use “,” to separate operations on multiple counters.

• If any of the conditions is false, the loop will be terminated.

• As an example: 

• Try to find alternatives before you use it. 

for(int i = 0, j = 0; i < 10, j > -5; i++, j--)
cout << i << " " << j << "\n";
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Good programming style

• When you need to execute a loop for a fixed number of iterations, use a for

statement with a counter declared only for the loop. 

– This also applies if you know the maximum number of iterations. 

– This avoids potential conflicts on variable names. 

– See “scope of variables” below. 

• Use the loop that makes your program the most readable. 

• Typically only the counter variable enters the ( ) of a for statement. 

• You may use double or float for a counter, but this is not recommended. 

– Use integer only! 

• Drop { } only when you know what you are doing. 

• Align your { }. Indent your codes properly. 
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Scope of variables

• A variable has its scope
(or life cycle).

– Where it is “alive” 
and can be accessed. 

• For all the variables you 
have seen so far, they 
live only in the block
in which they are 
declared. 

if (...)
{
int a = 10;

}
a = 20; // error

while (...)
{
int a = 10;

}
a = 20; // error

for (int i = 0; i < 10; i++)
{
; 

}
i = 20; // error

int i;
for (i = 0; i < 10; i++)
{
; 

}
i = 20; // ok!
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Scope of variables

• Two variables declared in the same level
cannot have the same variable name. 

– One main reason to use for. 

• However, this is allowed if one is declared 
in an inner block. 

– In the inner block, after the same 
variable name is used to declare a new 
variable, it “replaces” the original one. 

– However, its life ends when the inner 
block ends. 

int a = 0;
if (a == 0)
{
cout << a << "\n"; // ?
int a = 10;
cout << a << "\n"; // ?

}
cout << a << "\n"; // ?

int i = 0;
for (; i < 10; i++)
{
cout << i << " ";

}
// ...
int i = 0; // error!
for (; i > -10; i--)
{
cout << i << " ";
}
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Outline

• Preparations

• Selection

• Repetition

– while and do-while

– for

– Something else
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• Like the selection process, loops can also be nested. 

– Outer loop, inner loop, most inner loop, etc.  

• Nested loops are not always necessary, but they can be helpful. 

– Particularly when we need to handle a multi-dimensional case. 

• E.g., write a program to output some integer points on an (x, y)-plane like this: 

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

• This can still be done with only 
one level of loop. but using a 
nested loop is much easier. 

Nested loops

for (int x = 1; x <= 3; x++)
{
for (int y = 1; y <= 3; y++)
cout << "(" << x << ", " << y << ") ";

cout << " ";
}
// where to output a new line character?
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Infinite loops

• An infinite loop is a loop that does not terminate.

• Usually an infinite loop is a logical error made by the programmer. 

– When it happens, check your program.

• When your program does not stop, press <Ctrl + C>. 

int a = 0;
while(a >= 0)
a++;

while(true)
cout << 1;

for(; ; )
cout << 1;
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• When we implement a repetition process, sometimes we need to further change 
the flow of execution of the loop. 

• A break statement brings us to exit the loop immediately. 

• When continue is executed, statements after it in the loop are skipped. 

– The looping condition will be checked immediately. 

– If it is satisfied, the loop starts from the beginning again. 

• How to write a program to print out all integers from 1 to 100 except multiples 
of 10? 

break and continue

for (int a = 1; a <= 100; a++)
{
if (a % 10 == 0)
continue;

cout << a << " ";
}

for (int a = 1; a <= 100; a++)
{
if(a % 10 != 0)
cout << a << " ";

}

Preparations Selection Repetition



Ling-Chieh Kung (NTU IM)Programming Design – Control Statements 62 / 63

break and continue

• The effect of break and continue is just 

on the current level. 

– If a break is used in an inner loop, the 

execution jumps to the outer loop. 

– If a continue is used in an inner loop, 

the execution jumps to the condition 
check of the inner loop. 

• What will be printed out at the end of this 
program?

int a = 0, b = 0;
while(a <= 10)
{
while(b <= 10)
{
if(b == 5)
break;

cout << a * b << "\n";
b++;

}
a++;

}
cout << a << "\n"; // ?
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Infinite loops with a break

• We may intentionally create an infinite loop and terminate it with a break. 

– E.g., we may wait for an “exit” input and then leave the loop with a break. 

Preparations Selection Repetition

char a = 0;
cout << "Exit? ";
cin >> a;

while (a != 'y' && a != 'Y')
{
cout << "Exit? ";
cin >> a;

}

char a = 0;
cout << "Exit? ";
cin >> a;

while (true)
{
cout << "Exit? ";
cin >> a;
if (a == 'y' || a == 'Y')
break;

}
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