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Functions

• In C++ and most modern programming languages, we may put statements into 
functions to be invoked in the future. 

– Also known as procedures in some languages. 

• Why functions? 

• We need modules instead of a huge main function.

– Easier to divide the works: modularization. 

– Easier to debug: maintenance. 

– Easier to maintain consistency. 

• We need something that can be used repeatedly. 

– Enhance reusability. 
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Structure of functions

• In C++, a function is composed of a header and a body. 

• A header for declaration: 

– A function name (identifier). 

– A list of input parameters. 

– A return value. 

• A body for definition: 

– Statements that define the task. 

• Let’s start with an example. 

Function

Input parameters

A returned value
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Function definition

• There is an add() function: 

• In the main function we invoke (call) the 
add() function. 

• Before the main function, there is a function
header/prototype declaring the function. 

• After the main function, there is a function
body defining the function. 

#include <iostream>
using namespace std;

int add (int, int);
int main ()
{
int c = add(10, 20); 
cout << c << endl;
return 0;

}
int add (int num1, int num2)
{
return num1 + num2;

}
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Function declaration

• To implement a function, we first declare its prototype: 

• In a function prototype, we declare its appearance and input/output format. 

• The name of the function follows the same rule for naming variable.

• A list of (zero, one, or multiple) parameters: 

– The parameters passed into the function with their types.

– We must declare their types. Declaring their names are optional. 

• A return type indicates the type of the function return value. 

return type function name (parameter types);

int add (int, int);

Basics of functions Scope of variables revisited More about functions



Ling-Chieh Kung (NTU IM)Programming Design – Functions 7 / 46

Function declaration

• Some examples of function prototype: 

– A function receives two integers 
and returns an integer.

– The parameter names may provide 
“hints” to what this function does. 

– A function receives two 
double and returns one 
double. 

• For a function declaration, the semicolon is required. 

• Every type can be the return type.

– It may be “void” if the function returns nothing.

int add (int num1, int num2);
int add (int, int);

double divide (double, double);
double divide (double num, double den);
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Creating a function

• Declare the function before using it.

– Typically after the preprocessors and before the main function. 

• Then we need to define the function by writing the function body. 

– Typically after the main function, though not required. 

• In a function prototype, we do not need to 
specify parameter names. 

– But in a function definition, we need! 

• These parameters can be viewed as
variables declared inside the function. 

– They can be accessed only in the function. 

int add (int num1, int num2)
{
return num1 + num2;

}
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Function definition

• You have written one function: the main function. 

• Defining other functions can be done in the same way. 

– The first line, the function header, is almost 
identical to the prototype. 

– The parameter names must be specified. 

– Statements are then written for a specific task. 

• The keyword return terminates the function execution and returns a value. 

return type function name (parameters)
{
statements

}

int add (int num1, int num2)
{
return num1 + num2;

}
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Function invocation

• When a function is invoked in the 
main function, the program execution 
jumps to the function. 

• After the function execution is 
complete, the program execution 
jumps back to the main function, 
exactly where the function is called. 

• What if another function is called in a 
function? 

(Start)

The main 
program

(End)

Function 1

Function 2

Function 3

Function 1
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Function invocation
int add (int, int);
void test (int);
int main ()
{
int c = add(10, 20); 
cout << c << endl;
return 0;

}
int add (int num1, int num2)
{
test (num1);
return num1 + num2;

}
void test (int toPrint)
{
cout << toPrint << endl;

}

The main 
program

add test

10, 20

30

10
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Function declaration and definition

• You may choose to define a 
function before the main function. 

– In this case, the function 
prototype can be omitted. 

• In any case, you must declare a 
function before you use it. 

int add (int num1, int num2)
{
return num1 + num2;

}

int main ()
{
// fine!
int c = add(10, 20); 
cout << c << endl;
return 0;

}

void a()
{
// error!
b(); 

}
void b()
{
;

}

int main ()
{
a();
b();
return 0;

}
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Function declaration and definition

• In some cases, function prototypes must be used. 

– Direct or indirect self-invocations are called recursion (a topic to be 
discussed in the next lecture). 

• Using function prototypes also enhances communications and maintenance. 

void a();
void b();
int main ()
{
a();
b();
return 0;

}

void a()
{
// fine!
b();

}
void b()
{
a();

}

void a()
{
// error!
b();

}
void b()
{
a();

}

int main ()
{
a();
b();
return 0;

}
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Function parameters vs. arguments

• When we invoke a function, we need to 
provide arguments. 

– Parameters are used inside the function. 

– Arguments are passed into the function. 

• If a pair of parameter and argument are both 
variables, their names can be different. 

• Let’s visualize the memory events. 

int add (int num1, int num2)
{
return num1 + num2;

}
int main ()
{
double q1 = 10.5;
double q2 = 20.7;
double c = add(q1, q2); // !
cout << c << endl;
return 0;

}
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Function arguments

• Function arguments can be: 

– Literals. 

– Variables. 

– Constant variables. 

– Expressions. 

• If an argument’s type is different from 
the corresponding parameter’s type, 
compiler will try to cast it. 

int add (int, int);
int main ()
{
const int C = 5; 
double d = 1.6;
cout << add(10, 20) << endl; 
cout << add(C, d) << endl; // !
cout << add(10 * C, 20) << endl; 
return 0;

}

int add (int num1, int num2)
{
return num1 + num2;

}
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Function return value

• We can return one or no value back to the place we invoke the function.

• Use the return statement to return a value.

• If you do not want to return anything, declare the function return type as void. 

– In this case, the return statement can be omitted. 

– Or we may write return;.

– Otherwise, having no return statement results in a compilation error. 
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Function return value

• There can be multiple 
return statements. 

• A function runs until the first
return statement is met. 

– Or the end of the 
function for a function 
returning void. 

• We need to ensure that at 
least one return will be 
executed! 

int max (int a, int b)
{
if(a > b)
return a; 

else
return b; 

}

int test (int);

int main()
{
cout << test(-1); 
return 0;

}

int test (int a)
{
if (a > 0)
return 5;

}
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Example

• What do these two functions do? 

• Which one to choose?

int factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a; // ans = ans * a;

return ans;
}

void factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a; // ans = ans * a;

cout << ans;
}
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Good programming style

• Name a function so that its purpose is clear. 

• In a function, name a parameter so that its purpose is clear. 

• Declare all functions with comments. 

– Ideally, other programmers can understand what a function does without 
reading the definition. 

• Declare all functions at the beginning of the program.

Basics of functions Scope of variables revisited More about functions



Ling-Chieh Kung (NTU IM)Programming Design – Functions 20 / 46

Outline

• Basics of functions

• Scope of variables revisited 

• More about functions

Basics of functions Scope of variables revisited More about functions



Ling-Chieh Kung (NTU IM)Programming Design – Functions 21 / 46

Variable lifetime

• Four levels of variable lifetime (life scope) in C++ can be discussed now. 

– local, global, external, and static. 

• We’ll discuss more types of variables in this semester. 
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Local variables

• A local variable is declared in a block.

• It lives from the declaration to the end of block.

• In the block, it will hide other variables with same name. 

int main()
{
int i = 50; // it will be hidden
for(int i = 0; i < 20; i++)
{   
cout << i << " "; // print 0 1 2 … 19

}
cout << i << endl; // 50
return 0;

} 
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Global variables

• A global variable is declared outside any block 
(thus outside the main function)

– From declaration to the end of the program. 

• It will be hidden by any local variable with the 
same name. 

– To access a global variable, use the scope 
resolution operator ::.  

• There’s no difference in the way you declare a 
local or global variable. The locations matter.

• We may add auto to declare a local or global 

variable, but since it is the default setting, almost 
no one adds this.

#include <iostream>
using namespace std;

int i = 5;

int main()
{
for(; i < 20; i++)
cout << i << " "; // ?

cout << endl;
int i = 2;
cout << i << endl; // ?
cout << ::i << endl; // ?
return 0;

} 
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External variables

• In a large-scale system, many programs run together. 

• If a program wants to access a variable defined in another program, it can 
declare the variable with the key word extern.

– extern int a; 

– a must has been defined in another program. 

– These programs must run together. 

• You will not need this now… actually you should try to avoid it. 

– It hurts modularization and makes the system hard to maintain. 

– Though it still exists in some old systems (e.g., some BBS sites). 

• Note that global variables should be avoided for the same reason. 
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Static variables

• The memory space allocated to a static variable will not be released until the 
program terminates. 

• Once a static variable is declared, all other declaration statements will not be 
executed. 

• A static global variable cannot be declared as external in other programs. 
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• When do we use a static variable? 

Static variables

int test();
int main()
{
for (int a = 0; a < 10; a++)
cout << test() << " "; 

return 0; // 1, 1, ..., 1
} 
int test()
{
int a = 0;
a++;
return a;

}

int test();
int main()
{
for (int a = 0; a < 10; a++)
cout << test() << " "; 

return 0; // 1, 2, ..., 10
} 
int test()
{
static int a = 0;
a++;
return a;

}
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Good programming style

• You have to distinguish between local and global variables. 

– Try to avoid global variables! 

– One particular situation to use global variables is to define constants. 

– Always try to use local variables to replace global variables. 

• You may not need static and external variables now or even in the future.

• But you need to know these things exist.
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Call-by-value mechanism (1/4)

• Consider the example program. 

• Is the result strange? 

void swap (int x, int y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl; 
swap(a, b);
cout << a << " " << b << endl; 

}
void swap (int x, int y)
{
int temp = x;
x = y;
y = temp;

}
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Call-by-value mechanism (2/4)

• The default way of invoking a function is the “call-
by-value” (pass-by-value) mechanism. 

• When the function swap() is invoked: 

– First two new variables x and y are created. 

– The values of a and b are copied into x and y. 

– The values of x and y are swapped. 

– The function ends, x and y are destroyed, and 

memory spaces are released. 

– The execution goes back to the main function. 
Nothing really happened… 

Address Identifier Value

- a 10

- b 20

Memory

- x

- y

- x 10

- y 20

- x 20

- y 10
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Call-by-value mechanism (3/4)

• The call-by-value mechanism is adopted so that: 

– Functions can be written as independent entities.

– Modifying parameter values do not affect any other functions. 

• Work division becomes easier and program modularity can also be enhanced. 

– Otherwise one cannot predict how her program will run without knowing 
how her teammates implement some functions. 

• In some situations, however, we do need a callee to modify the values of some 
variables defined in the caller. 

– We may “call by reference” (to be introduced in the next week). 

– Or we may pass an array to a function. 
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Call-by-value mechanism (4/4)

• When an array parameter is modified in a 
function, the caller also see it modified! 

• Why? 

• Passing an array is passing an address. 

– The callee modifies whatever 
contained in those addresses. 

void shiftArray (int [], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
shiftArray(num, 5);
for (int i = 0; i < 5; i++)
cout << num[i] << " ";

return 0;
}
void shiftArray (int a[], int len)
{
int temp = a[0];
for (int i = 0; i < len - 1; i++)
a[i] = a[i + 1];

a[len - 1] = temp;
}
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Passing an array as an argument (1/3)

• An array can also be passed into a function.

– Declaration: need a []. 

– Invocation: use the array name. 

– Definition: need a [] and a name for 

that array in the function. 

• We do not need to indicate the size of the 
array! 

– An array variable stores an address. 

– “Passing an array” is actually telling
the function how to access the array. 

• Let’s visualize the memory events. 

void printArray (int [], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
printArray(num, 5);
return 0;

}
void printArray (int a[], int len)
{
for (int i = 0; i < len; i++)
cout << a[i] << " ";

cout << endl;
}
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Passing an array as an argument (2/3)

• It is fine if we indicate the array size. 

– But no new memory space will be 
allocated accordingly. 

– That number will just be ignored. 

– They can even be inconsistent. 

void printArray (int [5], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
printArray(num, 5);
return 0;

}
void printArray (int a[5], int len)
{
for (int i = 0; i < len; i++)
cout << a[i] << " ";

cout << endl;
}
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Passing an array as an argument (3/3)

• We may also pass multi-
dimensional arrays. 

• The kth-dimensional array 
size must be specified for 
all k ≥ 2!

– Just like when we 
declare a multi-
dimensional array.  

• Now they must be 
consistent. 

void printArray (int [][2], int);
int main()
{
int num[5][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};
printArray(num, 5);
return 0;

}
void printArray (int a[][2], int len)
{
for (int i = 0; i < len; i++)
{
for (int j = 0; j < 2; j++)
cout << a[i][j] << " ";

cout << endl;
}    

}
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Constant parameters (1/3)

• In many cases, we do not want a parameter to be modified inside a function. 

• For example, consider the factorial function: 

• For no reason should the parameter n be modified. You know this, but how to 

prevent other programmer from doing so? 

int factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a; 

return ans;
}
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Constant parameters (2/3)

• We may declare a parameter as a constant parameter: 

• Once we do so, if we assign any value to n, there will be a compilation error. 

• The argument passed into a constant parameter can be a non-constant variable. 

int factorial (const int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a; 

return ans;
}
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Constant parameters (3/3)

• For arguments whose values may 
be but should not be modified in a 
function, it is good to protect them. 

– E.g., arrays. 

void printArray (const int [5], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
printArray(num, 5);
return 0;

}
void printArray (const int a[5], int len)
{
for (int i = 0; i < len; i++)
cout << a[i] << " ";

cout << endl;
}
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Function overloading (1/4)

• There is a function calculating xy:

– int pow (int base, int exp);

• Suppose we want to calculate xy where y may be fractional: 

– double powExpDouble (int base, double exp);

• What if we want more?  

– double powBaseDouble (double base, int exp);

– double powBothDouble (double base, double exp);

• We may need a lot of powXXX() functions, each for a different parameter set.  
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Function overloading (2/4) 

• To make programming easier, C++ provides function overloading. 

• We can define many functions having the same name if their parameters are not 
the same. 

• So we do not need to memorize a lot of function names.

– int pow (int, int);

– double pow (int, double);

– double pow (double, int);

– double pow (double, double);

• Almost all functions in the C++ standard library are overloaded, so we can use 
them conveniently.  
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Function overloading (3/4)

• Different functions must have different function signatures. 

– This allows the computer to know which function to call. 

• A function signature includes

– Function name.

– Function parameters (number of parameters and their types). 

• A function signature does not include return type! Why? 

• When we define two functions with the same name, we say that they are 
overloaded functions. They must have different parameters: 

– Numbers of parameters are different. 

– Or at least one pair of corresponding parameters have different types.
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Function overloading (4/4)

• Here are two functions:

– void print(char c, 
int num);

– void print(char c);

• print() can print c for num
times. If no num is assigned, 
print a single c.

void print (char c, int num)
{
for (int i = 0; i < num; i++)
cout << c;

}

void print (char c)
{
cout << c;

}
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Default arguments (1/2)

• In the previous example, it is identical to give num a default value 1. 

• In general, we may assign default values for some parameters in a function.

• As an example, consider the following function that calculates a circle area: 

• When we call it, we may use circleArea(5.5, 3.1416), which will assign 
3.1416 to pi, or circleArea(5.5), which uses 3.14 as pi.

double circleArea (double, double = 3.14);
// ...
double circleArea (double radius, double pi)
{
return radius * radius * pi;

}
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Default arguments (2/2)

• Default arguments must be assigned before the function is called. 

– In a function declaration or a function definition. 

• Default arguments must be assigned just once. 

• You can have as many parameters using default values as you want.

• However, parameters with default values must be put behind (to the right of) 
those without a default value. 

– Once we use the default value of one argument, we need to use the default 
values for all the following arguments. 

• How to choose between function overloading and default arguments? 
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Inline functions (1/2)

• When we call a function, the system needs to do a lot of works. 

– Allocating memory spaces for parameters. 

– Copying and passing values as arguments. 

– Record where we are in the caller. 

– Pass the program execution to the callee. 

– After the function ends, destroy all the parameters and get back to the 
calling function.  

• When there are a lot of function invocations, the program will take a lot of time 
doing the above stuffs. It then becomes slow. 

• How to save some time? 
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Inline functions (2/2)

• In C++ (and some other modern languages), we may define inline functions. 

• To do so, simply put the keyword inline in front of the function name in a 

function prototype or header. 

• When the compiler finds an inline function, it will replace the invocation by the 
function statements. 

– The function thus does not exist! 

– Statements will be put in the caller and executed directly. 

• While this saves some time, it also expands the program size. 

• In most cases, programmers do not use inline functions.  
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