
Ling-Chieh Kung (NTU IM)Programming Design – Functions 1 / 46

Programming Design

Functions

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 2 / 46

Functions

• In C++ and most modern programming languages, we may put statements into
functions to be invoked in the future.

– Also known as procedures in some languages.

• Why functions?

• We need modules instead of a huge main function.

– Easier to divide the works: modularization.

– Easier to debug: maintenance.

– Easier to maintain consistency.

• We need something that can be used repeatedly.

– Enhance reusability.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 3 / 46

Outline

• Basics of functions

• Scope of variables revisited

• More about functions

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 4 / 46

Structure of functions

• In C++, a function is composed of a header and a body.

• A header for declaration:

– A function name (identifier).

– A list of input parameters.

– A return value.

• A body for definition:

– Statements that define the task.

• Let’s start with an example.

Function

Input parameters

A returned value

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 5 / 46

Function definition

• There is an add() function:

• In the main function we invoke (call) the
add() function.

• Before the main function, there is a function
header/prototype declaring the function.

• After the main function, there is a function
body defining the function.

#include <iostream>
using namespace std;

int add (int, int);
int main ()
{
int c = add(10, 20);
cout << c << endl;
return 0;

}
int add (int num1, int num2)
{
return num1 + num2;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 6 / 46

Function declaration

• To implement a function, we first declare its prototype:

• In a function prototype, we declare its appearance and input/output format.

• The name of the function follows the same rule for naming variable.

• A list of (zero, one, or multiple) parameters:

– The parameters passed into the function with their types.

– We must declare their types. Declaring their names are optional.

• A return type indicates the type of the function return value.

return type function name (parameter types);

int add (int, int);

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 7 / 46

Function declaration

• Some examples of function prototype:

– A function receives two integers
and returns an integer.

– The parameter names may provide
“hints” to what this function does.

– A function receives two
double and returns one
double.

• For a function declaration, the semicolon is required.

• Every type can be the return type.

– It may be “void” if the function returns nothing.

int add (int num1, int num2);
int add (int, int);

double divide (double, double);
double divide (double num, double den);

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 8 / 46

Creating a function

• Declare the function before using it.

– Typically after the preprocessors and before the main function.

• Then we need to define the function by writing the function body.

– Typically after the main function, though not required.

• In a function prototype, we do not need to
specify parameter names.

– But in a function definition, we need!

• These parameters can be viewed as
variables declared inside the function.

– They can be accessed only in the function.

int add (int num1, int num2)
{
return num1 + num2;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 9 / 46

Function definition

• You have written one function: the main function.

• Defining other functions can be done in the same way.

– The first line, the function header, is almost
identical to the prototype.

– The parameter names must be specified.

– Statements are then written for a specific task.

• The keyword return terminates the function execution and returns a value.

return type function name (parameters)
{
statements

}

int add (int num1, int num2)
{
return num1 + num2;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 10 / 46

Function invocation

• When a function is invoked in the
main function, the program execution
jumps to the function.

• After the function execution is
complete, the program execution
jumps back to the main function,
exactly where the function is called.

• What if another function is called in a
function?

(Start)

The main
program

(End)

Function 1

Function 2

Function 3

Function 1

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 11 / 46

Function invocation
int add (int, int);
void test (int);
int main ()
{
int c = add(10, 20);
cout << c << endl;
return 0;

}
int add (int num1, int num2)
{
test (num1);
return num1 + num2;

}
void test (int toPrint)
{
cout << toPrint << endl;

}

The main
program

add test

10, 20

30

10

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 12 / 46

Function declaration and definition

• You may choose to define a
function before the main function.

– In this case, the function
prototype can be omitted.

• In any case, you must declare a
function before you use it.

int add (int num1, int num2)
{
return num1 + num2;

}

int main ()
{
// fine!
int c = add(10, 20);
cout << c << endl;
return 0;

}

void a()
{
// error!
b();

}
void b()
{
;

}

int main ()
{
a();
b();
return 0;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 13 / 46

Function declaration and definition

• In some cases, function prototypes must be used.

– Direct or indirect self-invocations are called recursion (a topic to be
discussed in the next lecture).

• Using function prototypes also enhances communications and maintenance.

void a();
void b();
int main ()
{
a();
b();
return 0;

}

void a()
{
// fine!
b();

}
void b()
{
a();

}

void a()
{
// error!
b();

}
void b()
{
a();

}

int main ()
{
a();
b();
return 0;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 14 / 46

Function parameters vs. arguments

• When we invoke a function, we need to
provide arguments.

– Parameters are used inside the function.

– Arguments are passed into the function.

• If a pair of parameter and argument are both
variables, their names can be different.

• Let’s visualize the memory events.

int add (int num1, int num2)
{
return num1 + num2;

}
int main ()
{
double q1 = 10.5;
double q2 = 20.7;
double c = add(q1, q2); // !
cout << c << endl;
return 0;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 15 / 46

Function arguments

• Function arguments can be:

– Literals.

– Variables.

– Constant variables.

– Expressions.

• If an argument’s type is different from
the corresponding parameter’s type,
compiler will try to cast it.

int add (int, int);
int main ()
{
const int C = 5;
double d = 1.6;
cout << add(10, 20) << endl;
cout << add(C, d) << endl; // !
cout << add(10 * C, 20) << endl;
return 0;

}

int add (int num1, int num2)
{
return num1 + num2;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 16 / 46

Function return value

• We can return one or no value back to the place we invoke the function.

• Use the return statement to return a value.

• If you do not want to return anything, declare the function return type as void.

– In this case, the return statement can be omitted.

– Or we may write return;.

– Otherwise, having no return statement results in a compilation error.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 17 / 46

Function return value

• There can be multiple
return statements.

• A function runs until the first
return statement is met.

– Or the end of the
function for a function
returning void.

• We need to ensure that at
least one return will be
executed!

int max (int a, int b)
{
if(a > b)
return a;

else
return b;

}

int test (int);

int main()
{
cout << test(-1);
return 0;

}

int test (int a)
{
if (a > 0)
return 5;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 18 / 46

Example

• What do these two functions do?

• Which one to choose?

int factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a; // ans = ans * a;

return ans;
}

void factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a; // ans = ans * a;

cout << ans;
}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 19 / 46

Good programming style

• Name a function so that its purpose is clear.

• In a function, name a parameter so that its purpose is clear.

• Declare all functions with comments.

– Ideally, other programmers can understand what a function does without
reading the definition.

• Declare all functions at the beginning of the program.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 20 / 46

Outline

• Basics of functions

• Scope of variables revisited

• More about functions

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 21 / 46

Variable lifetime

• Four levels of variable lifetime (life scope) in C++ can be discussed now.

– local, global, external, and static.

• We’ll discuss more types of variables in this semester.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 22 / 46

Local variables

• A local variable is declared in a block.

• It lives from the declaration to the end of block.

• In the block, it will hide other variables with same name.

int main()
{
int i = 50; // it will be hidden
for(int i = 0; i < 20; i++)
{
cout << i << " "; // print 0 1 2 … 19

}
cout << i << endl; // 50
return 0;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 23 / 46

Global variables

• A global variable is declared outside any block
(thus outside the main function)

– From declaration to the end of the program.

• It will be hidden by any local variable with the
same name.

– To access a global variable, use the scope
resolution operator ::.

• There’s no difference in the way you declare a
local or global variable. The locations matter.

• We may add auto to declare a local or global

variable, but since it is the default setting, almost
no one adds this.

#include <iostream>
using namespace std;

int i = 5;

int main()
{
for(; i < 20; i++)
cout << i << " "; // ?

cout << endl;
int i = 2;
cout << i << endl; // ?
cout << ::i << endl; // ?
return 0;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 24 / 46

External variables

• In a large-scale system, many programs run together.

• If a program wants to access a variable defined in another program, it can
declare the variable with the key word extern.

– extern int a;

– a must has been defined in another program.

– These programs must run together.

• You will not need this now… actually you should try to avoid it.

– It hurts modularization and makes the system hard to maintain.

– Though it still exists in some old systems (e.g., some BBS sites).

• Note that global variables should be avoided for the same reason.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 25 / 46

Static variables

• The memory space allocated to a static variable will not be released until the
program terminates.

• Once a static variable is declared, all other declaration statements will not be
executed.

• A static global variable cannot be declared as external in other programs.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 26 / 46

• When do we use a static variable?

Static variables

int test();
int main()
{
for (int a = 0; a < 10; a++)
cout << test() << " ";

return 0; // 1, 1, ..., 1
}
int test()
{
int a = 0;
a++;
return a;

}

int test();
int main()
{
for (int a = 0; a < 10; a++)
cout << test() << " ";

return 0; // 1, 2, ..., 10
}
int test()
{
static int a = 0;
a++;
return a;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 27 / 46

Good programming style

• You have to distinguish between local and global variables.

– Try to avoid global variables!

– One particular situation to use global variables is to define constants.

– Always try to use local variables to replace global variables.

• You may not need static and external variables now or even in the future.

• But you need to know these things exist.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 28 / 46

Outline

• Basics of functions

• Scope of variables revisited

• More about functions

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 29 / 46

Call-by-value mechanism (1/4)

• Consider the example program.

• Is the result strange?

void swap (int x, int y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl;
swap(a, b);
cout << a << " " << b << endl;

}
void swap (int x, int y)
{
int temp = x;
x = y;
y = temp;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 30 / 46

Call-by-value mechanism (2/4)

• The default way of invoking a function is the “call-
by-value” (pass-by-value) mechanism.

• When the function swap() is invoked:

– First two new variables x and y are created.

– The values of a and b are copied into x and y.

– The values of x and y are swapped.

– The function ends, x and y are destroyed, and

memory spaces are released.

– The execution goes back to the main function.
Nothing really happened…

Address Identifier Value

- a 10

- b 20

Memory

- x

- y

- x 10

- y 20

- x 20

- y 10

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 31 / 46

Call-by-value mechanism (3/4)

• The call-by-value mechanism is adopted so that:

– Functions can be written as independent entities.

– Modifying parameter values do not affect any other functions.

• Work division becomes easier and program modularity can also be enhanced.

– Otherwise one cannot predict how her program will run without knowing
how her teammates implement some functions.

• In some situations, however, we do need a callee to modify the values of some
variables defined in the caller.

– We may “call by reference” (to be introduced in the next week).

– Or we may pass an array to a function.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 32 / 46

Call-by-value mechanism (4/4)

• When an array parameter is modified in a
function, the caller also see it modified!

• Why?

• Passing an array is passing an address.

– The callee modifies whatever
contained in those addresses.

void shiftArray (int [], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
shiftArray(num, 5);
for (int i = 0; i < 5; i++)
cout << num[i] << " ";

return 0;
}
void shiftArray (int a[], int len)
{
int temp = a[0];
for (int i = 0; i < len - 1; i++)
a[i] = a[i + 1];

a[len - 1] = temp;
}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 33 / 46

Passing an array as an argument (1/3)

• An array can also be passed into a function.

– Declaration: need a [].

– Invocation: use the array name.

– Definition: need a [] and a name for

that array in the function.

• We do not need to indicate the size of the
array!

– An array variable stores an address.

– “Passing an array” is actually telling
the function how to access the array.

• Let’s visualize the memory events.

void printArray (int [], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
printArray(num, 5);
return 0;

}
void printArray (int a[], int len)
{
for (int i = 0; i < len; i++)
cout << a[i] << " ";

cout << endl;
}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 34 / 46

Passing an array as an argument (2/3)

• It is fine if we indicate the array size.

– But no new memory space will be
allocated accordingly.

– That number will just be ignored.

– They can even be inconsistent.

void printArray (int [5], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
printArray(num, 5);
return 0;

}
void printArray (int a[5], int len)
{
for (int i = 0; i < len; i++)
cout << a[i] << " ";

cout << endl;
}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 35 / 46

Passing an array as an argument (3/3)

• We may also pass multi-
dimensional arrays.

• The kth-dimensional array
size must be specified for
all k ≥ 2!

– Just like when we
declare a multi-
dimensional array.

• Now they must be
consistent.

void printArray (int [][2], int);
int main()
{
int num[5][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};
printArray(num, 5);
return 0;

}
void printArray (int a[][2], int len)
{
for (int i = 0; i < len; i++)
{
for (int j = 0; j < 2; j++)
cout << a[i][j] << " ";

cout << endl;
}

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 36 / 46

Constant parameters (1/3)

• In many cases, we do not want a parameter to be modified inside a function.

• For example, consider the factorial function:

• For no reason should the parameter n be modified. You know this, but how to

prevent other programmer from doing so?

int factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a;

return ans;
}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 37 / 46

Constant parameters (2/3)

• We may declare a parameter as a constant parameter:

• Once we do so, if we assign any value to n, there will be a compilation error.

• The argument passed into a constant parameter can be a non-constant variable.

int factorial (const int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a;

return ans;
}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 38 / 46

Constant parameters (3/3)

• For arguments whose values may
be but should not be modified in a
function, it is good to protect them.

– E.g., arrays.

void printArray (const int [5], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
printArray(num, 5);
return 0;

}
void printArray (const int a[5], int len)
{
for (int i = 0; i < len; i++)
cout << a[i] << " ";

cout << endl;
}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 39 / 46

Function overloading (1/4)

• There is a function calculating xy:

– int pow (int base, int exp);

• Suppose we want to calculate xy where y may be fractional:

– double powExpDouble (int base, double exp);

• What if we want more?

– double powBaseDouble (double base, int exp);

– double powBothDouble (double base, double exp);

• We may need a lot of powXXX() functions, each for a different parameter set.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 40 / 46

Function overloading (2/4)

• To make programming easier, C++ provides function overloading.

• We can define many functions having the same name if their parameters are not
the same.

• So we do not need to memorize a lot of function names.

– int pow (int, int);

– double pow (int, double);

– double pow (double, int);

– double pow (double, double);

• Almost all functions in the C++ standard library are overloaded, so we can use
them conveniently.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 41 / 46

Function overloading (3/4)

• Different functions must have different function signatures.

– This allows the computer to know which function to call.

• A function signature includes

– Function name.

– Function parameters (number of parameters and their types).

• A function signature does not include return type! Why?

• When we define two functions with the same name, we say that they are
overloaded functions. They must have different parameters:

– Numbers of parameters are different.

– Or at least one pair of corresponding parameters have different types.

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 42 / 46

Function overloading (4/4)

• Here are two functions:

– void print(char c,
int num);

– void print(char c);

• print() can print c for num
times. If no num is assigned,
print a single c.

void print (char c, int num)
{
for (int i = 0; i < num; i++)
cout << c;

}

void print (char c)
{
cout << c;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 43 / 46

Default arguments (1/2)

• In the previous example, it is identical to give num a default value 1.

• In general, we may assign default values for some parameters in a function.

• As an example, consider the following function that calculates a circle area:

• When we call it, we may use circleArea(5.5, 3.1416), which will assign
3.1416 to pi, or circleArea(5.5), which uses 3.14 as pi.

double circleArea (double, double = 3.14);
// ...
double circleArea (double radius, double pi)
{
return radius * radius * pi;

}

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 44 / 46

Default arguments (2/2)

• Default arguments must be assigned before the function is called.

– In a function declaration or a function definition.

• Default arguments must be assigned just once.

• You can have as many parameters using default values as you want.

• However, parameters with default values must be put behind (to the right of)
those without a default value.

– Once we use the default value of one argument, we need to use the default
values for all the following arguments.

• How to choose between function overloading and default arguments?

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 45 / 46

Inline functions (1/2)

• When we call a function, the system needs to do a lot of works.

– Allocating memory spaces for parameters.

– Copying and passing values as arguments.

– Record where we are in the caller.

– Pass the program execution to the callee.

– After the function ends, destroy all the parameters and get back to the
calling function.

• When there are a lot of function invocations, the program will take a lot of time
doing the above stuffs. It then becomes slow.

• How to save some time?

Basics of functions Scope of variables revisited More about functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 46 / 46

Inline functions (2/2)

• In C++ (and some other modern languages), we may define inline functions.

• To do so, simply put the keyword inline in front of the function name in a

function prototype or header.

• When the compiler finds an inline function, it will replace the invocation by the
function statements.

– The function thus does not exist!

– Statements will be put in the caller and executed directly.

• While this saves some time, it also expands the program size.

• In most cases, programmers do not use inline functions.

Basics of functions Scope of variables revisited More about functions

	Programming Design�Functions
	Functions
	Outline
	Structure of functions
	Function definition
	Function declaration
	Function declaration
	Creating a function
	Function definition
	Function invocation
	Function invocation
	Function declaration and definition
	Function declaration and definition
	Function parameters vs. arguments
	Function arguments
	Function return value
	Function return value
	Example
	Good programming style
	Outline
	Variable lifetime
	Local variables
	Global variables
	External variables
	Static variables
	Static variables
	Good programming style
	Outline
	Call-by-value mechanism (1/4)
	Call-by-value mechanism (2/4)
	Call-by-value mechanism (3/4)
	Call-by-value mechanism (4/4)
	Passing an array as an argument (1/3)
	Passing an array as an argument (2/3)
	Passing an array as an argument (3/3)
	Constant parameters (1/3)
	Constant parameters (2/3)
	Constant parameters (3/3)
	Function overloading (1/4)
	Function overloading (2/4)
	Function overloading (3/4)
	Function overloading (4/4)
	Default arguments (1/2)
	Default arguments (2/2)
	Inline functions (1/2)
	Inline functions (2/2)

