Programming Design Algorithms and Recursion

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Introduction

- It is said that:
- Programming $=$ Data structure + Algorithms.
- http://en.wikipedia.org/wiki/Algorithms \%2B Data Structures \%3D Progr ams
- To design a program, choose data structures to store your data and choose algorithms to process your data.
- Each of "data structures" and "algorithms" requires one (or more) courses.
- We will only give you very basic ideas.

Algorithms

- Today we talk about algorithms, collections of steps for completing a task.
- In general, an algorithm is used to solve a problem.
- The most common strategy is to divide a problem into small pieces and then solve those subproblems.
- We will introduce recursion, a way to solve a problem based on the solution/outcome of subproblems.
- For a problem, there may be multiple algorithms.
- The first criterion, of course, is correctness.
- Time complexity is typically the next for judging correct algorithms.
- As examples, we introduce two specific problems: searching and sorting.
- Let's watch a video!

Outline

- Recursion
- Searching
- Sorting

Recursive functions

- A function is recursive if it invokes itself (directly or indirectly).
- The process of using recursive functions is called recursion.
- Why recursion?
- Many problems can be solved by dividing the original problem into one or several smaller pieces of subproblems.
- Typically subproblems are quite similar to the original problem.
- With recursion, we write one function to solve the problem by using the same function to solve subproblems.

Example 1: finding the maximum

- Suppose that we want to find the maximum number in an array $A[1 . . n]$ (which means A is of size n).
- Is there any subproblem whose solution can be utilitzed?
- Subproblem: Finding the maximum in an array with size smaller than n.
- A strategy:
- Subtask 1: First find the maximum of $A[1 . .(n-1)]$.
- Subtask 2: Then compare that with $A[n]$.
- How would you visualize this strategy?
- While subtask 2 is simple, subtask 1 is similar to the original task.
- It can be solved with the same strategy!

Example 1: finding the maximum

- Let's try to implement the strategy.
- First, I know I need to write a function whose header is:

```
double max(double array[], int len);
```

- This function returns the maximum in array (containing len elements).
- I want this to happen, though at this moment I do not know how.
- Now let's implement it:
- If the function really works, subtask 1 can be completed by invoking

```
double subMax = max(array, len - 1);
```

- Subtask 2 is done by comparing subMax and array [len - 1].

Example 1: finding the maximum

- A (wrong) implementation:
- What will happen if we really invoke this function?
- The program will not terminate!
- Even when len is 1 in an invocation, we will still try to invoke max (array, 0).
- For an array whose size is 1 :
- That number is the maximum!
- With this, we can add a stopping condition into our function.

```
double max(double array[], int len)
{
    double subMax = max(array, len - 1);
    if (array[len - 1] > subMax)
        return array[len - 1];
    else
        return subMax;
}
int main()
{
    double a[5] = {5, 7, 2, 4, 3};
    cout << max (a, 5);
    return 0;
}
```


Example 1: finding the maximum

- A correct implementation is:
- What is the outcome?

```
int main()
{
    double a[5] = {5, 7, 2, 4, 3};
    cout << max (a, 5) ;
    return 0;
}
```

- Both else can be removed. Why?

```
double max (double array[], int len)
{
    if (len = 1) // stopping condition
        return array[0];
    else
    {
        // recursive call
        double subMax = max (array, len - 1);
        if (array[len - 1] > subMax)
        return array[len - 1];
        else
            return subMax;
    }
}
```


Example 1: finding the maximum

- Is it okay to remove both else? Why?

```
double max (double array[], int len)
{
    if (len = 1) // stopping condition
        return array[0];
    else
    {
        // recursive call
        double subMax = max (array, len - 1);
        if (array[len - 1] > subMax)
            return array[len - 1];
```

```
double max (double array[], int len)
{
    if (len = 1) // stopping condition
        return array[0];
    // recursive call
    double subMax = max (array, len - 1);
    if (array[len - 1] > subMax)
        return array[len - 1];
    return subMax;
}
```


Example 2: computing factorials

- How to write a function that computes the factorial of n ?
- A subproblem: computing the factorial of $n-1$.
- A strategy: First calculate the factorial of $n-1$, then multiply it with n.

```
int factorial (int n)
{
    if (n = 1) // stopping condition
        return 1;
    else
        // recursive call
        return factorial (n - 1) * n;
}
```


Example 2: computing factorials

- When we invoke this function with argument 4:
- factorial (4)

$$
\begin{aligned}
& =\text { factorial }(3) * 4 \\
& =(\text { factorial }(2) * 3) * 4 \\
& =((\text { factorial }(1) * 2) * 3) * 4 \\
& =((1 * 2) * 3) * 4 \\
& =(2 * 3) * 4 \\
& =6 * 4 \\
& =24
\end{aligned}
$$

Example 3: the Fibonacci sequence

- Write a recursive function to find the nth Fibonacci number.
- The Fibonacci sequence is $1,1,2,3,5,8,13,21, \ldots$ Each number is the sum of the two proceeding numbers.
- The nth value can be found once we know the $(n-1)$ th and $(n-2)$ th values.

```
int fib (int n)
{
    if (n = 1)
        return 1;
    else if (n = 2)
        return 1;
    else // two recursive calls
        return (fib (n - 1) + fib (n - 2));
}
```


Some remarks

- There must be a stopping condition in a recursive function. Otherwise, the program will not terminate.
- In many cases, a recursive strategy can also be implemented with loops.
- E.g., writing a loop for finding a maximum and factorial.
- But sometimes it is hard to use loops to imitate a recursive function.
- Compared with an equivalent iterative function, a recursive implementation is usually simpler and easier to understand.
- However, it generally uses more memory spaces and is more time-consuming.
- Invoking functions has some cost.

Complexity issue of recursion

- In some cases, recursion is efficient enough.
- E.g., finding a maximum or calculating the factorial.
- In some cases, however, recursion can be very inefficient!
- E.g., Fibonacci.
- Let's compare the efficiency of two different implementations.

Complexity issue of recursion

- Two implementations:

```
int fib (int n)
{
    if (n = 1)
        return 1;
    else if (n = 2)
        return 1;
    else // two recursive calls
        return (fib (n-1) + fib (n-2));
}
```

```
double fibRepetitive (int n)
{
    if (n=1)
        return 1;
    else if (n = 2)
        return 1;
    double* fib = new double[n];
    fib[0] = 1;
    fib[1] = 1;
    for (int i = 2; i < n; i++)
        fib[i] = fib[i - 1] + fib[i - 2];
    double result = fib[n - 1];
    delete[] fib; // to be explained
    return result;
}
```


Complexity issue of recursion

- Which one is faster?

```
int main ()
{
    int n = 0;
    cin >> n;
    cout << fibRepetitive(n) << "\n"; // algorithm 1
    cout << fib(n) << "\n"; // algorithm 2
    return 0;
}
```


Polynomial time vs. exponential time

- Given n :
- The repetitive way has around $c_{1} n$ steps, where $c_{1}>0$ is a constant.
- The recursive way has around $c_{2} 2^{n}$ steps, where $c_{2}>0$ is a constant.
- When n is large enough, $c_{2} 2^{n}$ is much larger than $c_{1} n$.
- Even if $c_{1} \ll c_{2}$!
- We say the repetitive way is more efficient.
- Technically, we say that:
- The repetitive way is a polynomial-time algorithm
- The recursive way is an exponential-time algorithm.
- In general, an exponential-time algorithm is just too inefficient.

Power of recursion

- Though recursion is sometimes inefficient, typically implementation is easier.
- Let's consider the classic example "Hanoi Tower".
- There are three pillars and disks of different sizes which can slide onto any pillar. Disc i is smaller than disc j if $i<j$.
- A large disc cannot be placed on top of a small disc.
- Initially, all discs are at pillar A. We want to move them to pillar C:
- Only one disk can be moved at a time.
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack.
- Let's watch a video!
- What are the steps that solve the Hanoi Tower problem in the fastest way?

Power of recursion

- A recursive implementation:

```
void hanoi (char from, char via, char to, int disc)
{
    if (disc = 1)
        cout << "From " << fram << " to " << to << endl;
    else
    {
        hanoi (from, to, via, disc - 1);
        cout << "From " << from << " to " << to << endl;
        hanoi (via, from, to, disc - 1);
    }
}
```

```
#include <iostream>
using namespace std;
int main ()
{
    int disc = 0; // number of discs
    cin >> disc;
    char a = 'A', b = 'B', c = 'C';
    hanoi (a, b, c, disc);
    return 0;
}
```

- Is there a good way of solving the Hanoi Tower problem iteratively?

Outline

- Recursion
- Searching
- Sorting

Searching

- One fundamental task in computation is to search for an element.
- We want to determine whether an element exists in a set.
- If yes, we want to locate that element.
- E.g., looking for a string in an article.
- Here we will discuss how to search for an integer in an one-dimensional array.
- Whether the array is sorted makes a big difference.

Searching

- Consider an integer array $A[1 . . n]$ and an integer p.
- How to determine whether p exists in A ?
- If so, where is it?
- Assume that we only need to find one p even if there are multiple.
- Suppose that the array is unsorted.
- One of the most straightforward way is to apply a linear search.
- Compare each element with p one by one, from the first to the last.
- Whenever we find a match, report its location.
- Conclude that p does not exist if we end up with nothing.
- The number of operations we need to execute is roughly proportional to n.

Binary search

- What if the array is sorted?
- We may still apply the linear search.
- However, we may improve the efficiency by implementing a binary search.
- First, we compare p with the median m (e.g., $A[(n+1) / 2]$ if n is odd).
- If p equals m, bingo!
- If $p<m$, we know p must exist in the first half of A if it exists.
- If $p>m$, we know p must exist in the second half of A if it exists.
- For the latter two cases, we will continue searching in the subarray.
- Let's watch a video!

Binary search: pseudocode

- binarySearch (a sorted array A, search in between from and $t o$, search for p)

$$
\begin{aligned}
& \text { if } n=1 \\
& \text { return true if } A_{\text {from }}=p ; \text { return false otherwise } \\
& \text { else } \\
& \text { let median be floor }((f \text { from }+ \text { to }) / 2) \\
& \text { if } p=A_{\text {median }} \\
& \text { return true } \\
& \text { else if } p<A_{\text {median }} \\
& \text { return binarySearch }(A, \text { from, median, } p) \\
& \text { else } \\
& \text { return binarySearch }(A, \text { median }+1, \text { to }, p)
\end{aligned}
$$

Linear search vs. binary search

- In binary search, the number of instructions to be executed is roughly proportional to $\log _{2} n$.
- So binary search is much more efficient than linear search!
- The difference is huge is the array is large.
- However, binary search is possible only if the array is sorted.
- Is it worthwhile to sort an array before we search it?
- It is natural to implement binary search with recursion.
- A subproblem is to search for the element in one half of the array.
- Binary search can also be implemented with repetition.
- Is it natural to do so?

Outline

- Recursion
- Searching
- Sorting

Sorting

- Given a one-dimensional integer array A of size n, how to sort it?
- Given numbers $6,9,3,4$, and 7 , how would you sort them?
- Recall what you typically do when you play poker:
- First put the first number 6 aside.
- Compare the second number 9 with 6 . Because $9>6$, put 9 to the right of 6 .
- Compare the third number 3 with the sorted list (6,9). Because $3<6$, put 3 to the left of 6 .
- Compare 4 with ($3,6,9$). Because $3<4<6$, insert 4 in between 3 and 6 .
- Compare 7 with (3,4,6,9). Because $6<7<9$, insert 7 in between 6 and 9 .
- The result is (3, 4, 6, 7, 9).
- Let's watch a video!

Insertion sort

- The above algorithm is called insertion sort.
- The key is to maintain a sorted list.
- Then for each number in the unsorted list, insert it into the proper location so that the sorted list remains sorted.
- How would you implement the insertion sort?
- Recursion or repetition?
- If recursion, what is your strategy?

(Non-repetitive) insertion sort

- insertionSort(a non-repetitive array A, the array length n, an index cutoff $<n$)
$/ /$ at any time, $A_{1 . . \text { cutoff }}$ is sorted and $A_{(\text {cutoff }+1) . . n}$ is unsorted

$$
\begin{gathered}
\text { if } A_{\text {cutoff }+1}<A_{1 . \text { cutoff }} \\
\text { let } p \text { be } 1
\end{gathered}
$$

else
find p such that $A_{p-1}<A_{\text {cutoff }+1}<A_{p}$
insert $A_{\text {cutoff }+1}$ to A_{p} and shift $A_{p . \text {.cutoff }}$ to $A_{(p+1) \text {).(cutoff }+1)}$
if cutoff $+1<n$
$\underline{\text { insertionSort }}(A, n$, cutoff +1$)$

- What if A is repetitive?

Insertion sort

- Roughly how many instructions do we need for insertion sort?
- We need to do n insertions.
- To insert the k th value, we search for a position and shift some elements.
- A linear search: at most k comparisons.
- Shifting: at most k shifts.
- Roughly we need $1+2+\cdots+n$ operations, which is proportional to n^{2}.
- Does binary search help?

Mergesort (Merge sort)

- Insertion sort is simple and fast!
- Not really "fast", but faster than many similar sorting algorithm.
- Because its idea and implementation is simple, it is faster than most algorithms when the array size is small.
- Interestingly, there is another sorting algorithm:
- Its idea is somewhat similar to insertion sort.
- But it is significantly faster for large arrays!
- This algorithm is called mergesort.

Mergesort (Merge sort)

- Recall that in an insertion sort, we need to insert one number into a sorted list for many times.
- A key observation is that "inserting" another sorted list of size k into a sorted list can be faster than inserting k separate numbers one by one!
- So such "inserting" is actually "merging".
- Given an unsorted array, we will:
- First split the array into two parts, the first half and second half.
- Then sort each subarray.
- Finally, merge these two subarrays.
- Mergesort is perfect for recursion!

Mergesort (Merge sort): pseudocode

let median be floor(($1+n$)/2)
mergeSort $\left(A_{1 . \text { median }}\right.$, median) // now $A_{1 . \text { median }}$ is sorted
$\underline{\text { mergeSort }\left(A_{(\text {median }+1) . . n}, n-\text { median }+1\right) / / \text { now } A_{(\text {median }+1) . . n} \text { is sorted }}$ merge $A_{1 . . \text { median }}$ and $A_{(\text {median }+1) . n} / /$ how?

Mergesort (Merge sort)

- Interestingly, insertion sort is a special way of running mergesort.
- Not splitting the array into two halves.
- Instead, splitting it into $A[1 . . n-1]$ and $A[n]$.
- Once we use the "smart split", the efficiency is improved a lot!
- Insertion sort: Roughly proportional to n^{2}.
- Merge sort: Roughly proportional to $n \log n$.
- A simple observation can make a huge difference!

