
Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 1 / 43

Programming Design

Classes (I)

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 2 / 43

Object-oriented programming

• Until now, we have focused on procedural programming.

– The keys are logical controls and subprocedures, i.e., if, for, and functions.

• We will begin to introduce a new programming philosophy: object-oriented

programming (OOP).

– It is based on procedural programming.

– It is different in the perspective of thinking.

• In C, we use structures; in C++, we use classes.

• Like structures, we can use classes to define data types by ourselves.

– When we create variables with classes, they are called objects.

• As we will see, classes are much more powerful than structures.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 3 / 43

Outline

• Motivations

• Basic concepts

• Constructors and destructors

• Self-defined libraries

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 4 / 43

An example in struct

• Recall that we have the structure Point (which is a vector):

• May we generalize it into a multi-dimensional vector?

struct Point

{

 int x;

 int y;

 double distOri();

 void reflect()

};

double Point::distOri()

{

 return sqrt(pow(x, 2) + pow(y, 2));

}

void Point::reflect ()

{

 int temp = a.x;

 a.x = a.y;

 a.y = temp;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 5 / 43

An example in struct

• Let’s define a structure MyVector:

struct MyVector

{

 int n;

 int* m;

 void init(int dim);

};

void MyVector::init(int dim)

{

 n = dim;

 m = new int[n];

 for(int i = 0; i < n; i++)

 m[i] = 0;

}

int main()

{

 MyVector v;

 int dimension = 0;

 cin >> dimension;

 v.init(dimension);

 delete [] v.m;

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 6 / 43

An example in struct

• Let’s add some member functions:

struct MyVector

{

 // old things

 void print();

};

void MyVector::print()

{

 cout << "(";

 for(int i = 0; i < n - 1; i++)

 cout << m[i] << ", ";

 cout << m[n-1] << ")\n";

}

int main()

{

 MyVector v;

 v.init(5);

 v.m[0] = 10;

 v.print();

 delete [] v.m;

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 7 / 43

Drawbacks for using a structure

• Several drawbacks:

– We may forget to initialize the vector.

– Another programmer may print a vector in a bad way.

– n and the length of the dynamic array m may be inconsistent.

– We may forget to release the spaces allocated dynamically.

MyVector v;

int dim = 0;

cin >> dim;

v.init(dim);

cin >> v.n;

delete [] v.m;

MyVector a;

int dim = 0;

cin >> dim;

a.init(dim);

MyVector v;

v.print();

delete [] v.m;

MyVector v;

v.init(5);

v.m[0] = 10;

cout << "(";

for(int i = 0; i < n - 1; i++)

 cout << m[i] << ", ";

cout << m[n-1];

delete [] v.m;

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 8 / 43

Drawbacks for using a structure

• Our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed ways.

– n and the length of the dynamic array m cannot be modified separately.

– Spaces allocated dynamically will be released automatically.

• These issues may are not apparent when the program is of a small scale.

– They emerge when multiple programmers collaborate in one project.

– They emerge when you revise a program that you wrote three months ago.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 9 / 43

Drawbacks for using a structure

• So we use classes in C++!

• Recall our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed ways.

– n and the length of the dynamic array m cannot be modified separately.

– Spaces allocated dynamically will be released automatically.

• In C++, a class can:

– Define member functions that will be called automatically when and only

when an object is created/destroyed.

– Hide some members and open only allowed members to the public.

– And many more.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 10 / 43

Instance vs. static variables/functions

• In a class, we can define variables and functions, just like in a structure.

– They are call member variables and member functions.

• However, now there can be four types of class members:

– Instance variables (default).

– Static variables.

– Instance functions (default).

– Static functions.

• Starting from now, when we say member variables (fields) and member

functions, we are talking about instance ones.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 11 / 43

Outline

• Motivations

• Basic concepts

• Constructors and destructors

• Self-defined libraries

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 12 / 43

Class definition

• To define a class:

– Simply change struct to class.

– We may also define the function inside the

class definition block.

• Compilation error! Why?

class MyVector

{

 int n;

 int* m;

 void init(int dim);

 void print();

};

void MyVector::init(int dim)

{

 n = dim;

 m = new int[n];

 for(int i = 0; i < n; i++)

 m[i] = 0;

}

void MyVector::print()

{

 cout << "(";

 for(int i = 0; i < n - 1; i++)

 cout << m[i] << ", ";

 cout << m[n-1] << ")\n";

}

int main()

{

 MyVector v;

 v.init(5);

 delete [] v.m;

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 13 / 43

Visibility

• We can/must set visibility of members in a class:

– Public members can be accessed anywhere.

– Private members can be accessed only in the class.

– Protected members will be discussed later in this semester.

• These three keywords are the visibility modifiers.

• By default, all members’ visibility level is private.

– That is why v.init(5) generates a compilation error; init() is private

and cannot be invoked outside the class (e.g., in the main function).

• By setting visibility, we can hide/open our instance members.

– Usually all instance variables are private.

– Let’s see how to do this.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 14 / 43

Visibility

• A class with different

visibility levels:

• Private instance members

can only be accessed

inside the definition of

instance functions.

– E.g., init() and

print().

• Public instance members

can be accessed

everywhere.

class MyVector

{

private:

 int n;

 int* m;

public:

 void init(int dim);

 void print();

};

int main()

{

 MyVector v;

 v.init(5); // OK!

 delete [] v.m;

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 15 / 43

Why data hiding?

• Setting members to private is to do

data hiding.

• Why bother?

• By setting members to private, we

control the way that they are accessed.

– We can better predict how others

may use our class.

• As an example, now we can prevent
inconsistency between n and the length

of m!

int main()

{

 MyVector v;

 v.init(5); // fine

 v.n = 3; // compilation error!

 delete [] v.m;

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 16 / 43

Why data hiding?

• As another example, we do not want a vector to be

printed out in strange formats, such as {0, 10, 20},

[0, 10, 20), (0-10-20), etc.

– We want they all look the same, like (5, 6, 7).

– If we allow other programmers to access n and m,

they can print out a vector in any way they like!

– So we privatize instance variables and provide a
public member function print() to control

(restrict) the way of printing a vector.

• These public member functions are often called

interfaces. All others should communicate with the

class through interfaces.

class MyVector

{

private:

 int n;

 int* m;

public:

 void init(int dim);

 void print();

};

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 17 / 43

Visibility

• In general, some instance variables/functions should not be accessed directly (or

even known) by other ones.

– They should be used only in the class.

– In this case, set them private.

• You may see many classes with all instance variables private and all instance

functions public.

– If you do not know what to do, do this.

– However, any instance function that should not be invoked by others

should also be private.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 18 / 43

Private instance functions

• In an instance function, we can invoke an instance function.

• Set an instance function private if it should be not accessed by others.

int MyVector::max() {

 int max = m[0];

 for(int i = 1; i < n; i++) {

 if(m[i] > max)

 max = m[i];

 }

 return max;

}

void MyVector::printMax() {

 cout << "Max: " << max() << "\n";

}

class MyVector {

private:

 int n;

 int* m;

 int max();

public:

 void init(int dim);

 void print();

 void printMax();

};

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 19 / 43

Encapsulation

• The concepts of packaging (grouping member variables and member functions)

and data hiding together form the concept of “encapsulation”.

– Roughly speaking, we pack data (member variables) into a black box and

provide only controlled interfaces (member functions) for others to access

these data.

– Others should not even know how those interfaces are implemented.

• For OOP, there are three main characteristics/functionalities:

– Encapsulation.

– Inheritance.

– Polymorphism.

• The last two will be discussed later in this semester.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 20 / 43

Instance function overloading

• We can overload an instance

function with different parameters.

void MyVector::init()

{

 n = 0;

 m = NULL;

}
void MyVector::init(int dim)

{

 init(dim, 0);

}
void MyVector::init(int dim, int value)

{

 n = dim;

 m = new int[n];

 for(int i = 0; i < n; i++)

 m[i] = value;

}

class MyVector

{

private:

 int n;

 int* m;

public:

 void init();

 void init(int dim);

 void init(int dim, int value);

 void print();

};

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 21 / 43

Objects as arguments or return values

• We can pass an object into any function.

• A function can return an object.

• MyVector add(MyVector v1, MyVector v2);

– Returns the sum of the two input vectors.

– This should be a global function rather than an instance function. Why?

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 22 / 43

Objects as instance variables

• An instance variable’s type can be a class.

• In other words, an object can have other objects as members.

– This can also happen for structures.

• For example:

class MyTriangle

{

private:

 MyVector vertex1;

 MyVector vertex2;

 MyVector vertex3;

 // ...

};

class MyPolytope

{

private:

 int n; // number of vertices

 MyVector* vertex;

 // ...

};

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 23 / 43

Outline

• Motivations

• Basic concepts

• Constructors and destructors

• Self-defined libraries

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 24 / 43

Our hopes

• Recall our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed

ways.

– n and the length of the dynamic array m

cannot be modified separately.

– Spaces allocated dynamically will be

released automatically.

• The second and third have been done.

• The first and the last require constructors and

destructors.

class MyVector

{

private:

 int n;

 int* m;

public:

 void init();

 void init(int dim);

 void init(int dim, int value);

 void print();

};

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 25 / 43

Constructors

• A constructor is an instance function of a class.

– However, it is very special.

• A constructor will be invoked automatically when the object is created.

– It must be invoked.

– It cannot be invoked twice.

– It cannot be invoked by the programmer manually.

• Usually it is used to initialize the object.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 26 / 43

Constructors

• A constructor’s name is the same as the class.

• It does not return anything, not even void.

• You can (and usually will) overload them.

• The constructor with no parameter is the

default constructor.

• If, and only if, a programmer does not define

any constructor, the compiler makes a

default one which does nothing.

• A constructor may be private.

– Be invoked only by other constructors.

class MyVector

{

private:

 int n;

 int* m;

public:

 MyVector();

 MyVector(int dim);

 MyVector(int dim, int value);

 void print();

};

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 27 / 43

Constructors for MyVector

• Let’s define our class MyVector with constructors:

• Just like usual functions, a constructor may have a default argument.

class MyVector

{

private:

 int n;

 int* m;

public:

 MyVector();

 MyVector(int dim, int value = 0);

 void print();

};

MyVector::MyVector()

{

 n = 0;

 m = NULL;

}

MyVector::MyVector(int dim, int value)

{

 n = dim;

 m = new int[n];

 for(int i = 0; i < n; i++)

 m[i] = value;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 28 / 43

Constructors for MyVector

• Now, in the main function, we assign initial values when we declare objects:

• If any member variable needs an initial value when an object is created, you

should write a constructor to initialize it.

• Use constructor overloading to provide flexibility.

int main()

{

 MyVector v1(1);

 MyVector v2(3, 8);

 v1.print(); // (0)

 v2.print(); // (8, 8, 8)

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 29 / 43

Destructors

• A destructor is invoked right before an object is destroyed.

– It must be public and have no parameter.

• The compiler provides a default destructor that does nothing.

• To define your own destructor, use ~:

class MyVector

{

 // ...

public:

 // ...

 ~MyVector() { cout << "Bye~\n"; }

};

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 30 / 43

Why destructors?

• Suppose we do not define our own destructor.

• Then there may be memory leak when an object is destroyed.

– When there is dynamic memory allocation.

– Typically when there is a pointer member.

 int main()
{

 for(int i = 0; i < 10; i++) {

 MyVector v1(1);

 // memory leak

 }

 return 0;

}

MyVector::MyVector

 (int dim, int value)

{

 n = dim;

 m = new int[n];

 for(int i = 0; i < n; i++)

 m[i] = value;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 31 / 43

Why destructors?

• One typical mission for a destructor is to release those

dynamically allocated memory spaces pointed by

member variables.

– The default destructor does not do this. We must do

this by ourselves.

class MyVector

{

private:

 int n;

 int* m;

public:

 // ...

 ~MyVector()

 {

 delete [] m;

 }

};

int main()

{

 for(int i = 0; i < 10; i++) {

 MyVector v1(1);

 // no memory leak!

 }

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 32 / 43

Timing for constructors/destructors

• When a class has other classes as types of

instance variables, when are all the

constructors/destructors invoked?

class A

{

public:

 A() { cout << "A\n"; }

 ~A() { cout << "a\n"; }

};

class B

{

private:

 A a;

public:

 B() { cout << "B\n"; }

 ~B() { cout << "b\n"; }

};

int main()

{

 B b;

 return 0;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 33 / 43

Outline

• Motivations

• Basic concepts

• Constructors and destructors

• Self-defined libraries

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 34 / 43

Libraries

• There are many C++ standard libraries.

– <iostream>, <climits>, <cmath>, <cctype>, <cstring>, etc.

– Many (constant) variables and functions are defined there.

– Many more.

• We may also want to define our own libraries.

– Especially when we collaborate with others.

– Typically, one implements classes or global functions for the others to use.

– That function can be defined in a self-defined library.

• A library includes a header file (.h) and a source file (.cpp).

– The header file contains declarations; the source file contains definitions.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 35 / 43

Example

• Consider the following program with a single function myMax():

• Let’s define a constant variable for the array length in a header file.

#include <iostream>

using namespace std;

int myMax (int [], int);

int main ()

{

 int a[5] = {7, 2, 5, 8, 9};

 cout << myMax (a, 5);

 return 0;

}

int myMax (int a[], int len)

{

 int max = a[0];

 for (int i = 1; i < len; i++)

 {

 if (a[i] > max)

 max = a[i];

 }

 return max;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 36 / 43

Defining variables in a library

myMax.h

main.cpp

const int LEN = 5;

#include <iostream>

#include "myMax.h"

using namespace std;

int myMax (int [], int);

int main ()

{

 int a[LEN] = {7, 2, 5, 8, 9};

 cout << myMax (a, LEN);

 return 0;

}

int myMax (int a[], int len)

{

 int max = a[0];

 for (int i = 1; i < len; i++)

 {

 if (a[i] > max)

 max = a[i];

 }

 return max;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 37 / 43

Including a header file

• When your main program wants to include a self-defined header file, simply
indicate its path and file name.

– #include "myMax.h"

– #include "D:/test/myMax.h"

– #include "lib/myMax.h"

– Using \ or / does not matter (on Windows).

• We still compile the main program as usual.

• Let’s also define functions in our library!

– Now we need a source file.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 38 / 43

Defining functions in a library

 myMax.h myMax.cpp

 main.cpp

const int LEN = 5;

int myMax(int [], int);

#include <iostream>

#include "myMax.h"

using namespace std;

int main ()

{

 int a[LEN] = {7, 2, 5, 8, 9};

 cout << myMax(a, LEN);

 return 0;

}

int myMax(int a[], int len)

{

 int max = a[0];

 for (int i = 1; i < len; i++)

 {

 if (a[i] > max)

 max = a[i];

 }

 return max;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 39 / 43

Including a header and a source file

• When your main program also wants to include a self-defined source file, the
include statement needs not be changed.

– #include "myMax.h"

• We add a source file myMax.cpp.

– In the source file, we implement those functions declared in the header file.

– The main file names of the header and source files can be different.

• The two source files (main.cpp and myMax.cpp) must be compiled together.

– Each environment has its own way.

– In Dev-C++, we simply create a “console project”.

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 40 / 43

Defining one more function

myMax.h myMax.cpp

main.cpp

const int LEN = 5;

int myMax (int [], int);

void print(int);

#include <iostream>

#include "myMax.h"

using namespace std;

int main ()

{

 int a[LEN] = {7, 2, 5, 8, 9};

 print(myMax(a, LEN));

 return 0;

}

int myMax(int a[], int len)

{

 int max = a[0];

 for (int i = 1; i < len; i++)

 {

 if (a[i] > max)

 max = a[i];

 }

 return max;

}

void print(int i)

{

 cout << i; // cout undefined!

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 41 / 43

Defining one more function

• Each source file contains statements to run.

• Each source file must include the libraries it
needs for its statements.

#include <iostream>

using namespace std;

int myMax (int a[], int len)

{

 int max = a[0];

 for (int i = 1; i < len; i++)

 {

 if (a[i] > max)

 max = a[i];

 }

 return max;

}

void print (int i)

{

 cout << i; // good!

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 42 / 43

The complete set of files

myMax.h myMax.cpp

main.cpp

const int LEN = 5;

int myMax (int [], int);

void print (int);

#include <iostream>

#include "myMax.h"

using namespace std;

int main ()

{

 int a[LEN] = {7, 2, 5, 8, 9};

 print (myMax (a, LEN));

 return 0;

}

#include <iostream>

using namespace std;

int myMax (int a[], int len)

{

 int max = a[0];

 for (int i = 1; i < len; i++)

 {

 if (a[i] > max)

 max = a[i];

 }

 return max;

}

void print (int i)

{

 cout << i;

}

Motivations Basic concepts

Constructors and destructors Self-defined libraries

Ling-Chieh Kung (NTU IM) Programming Design – Classes (I) 43 / 43

Remarks

• In many cases, myMax.cpp also include
myMax.h.

– E.g., if LEN is accessed in
myMax.cpp.

• More will be discussed in further
courses (e.g., Data Structures).

– More than two source files.

– A header file including another
header file.

main.cpp

myMax.cpp

myMax.h

C++

Standard

Libraries

Motivations Basic concepts

Constructors and destructors Self-defined libraries

