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Static members    

• A class contains some instance variables and functions.  

– Each object has its own copy of instance variables and functions.  

• A member variable/function may be an attribute/operation of a class.  

– When the attribute/operation is class-specific rather than object-specific.  

– A class-specific attribute/operation should be identical for all objects.  

• These variables/functions are called static members.  
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• In MS Windows, each window is 

an object.  

– Windows is written in C++.  

– Mac OS is written in 

Objective-C.  

• Each window has some object-

specific attributes.  

• They also share one class-specific 

attribute: the color of their title 

bars.  

Static members: an example   

class Window 

{ 

private: 

  int width; 

  int height; 

  int locationX; 

  int locationY;  

  int status; // 0: min, 1: usual, 2: max 

  static int barColor; // 0: gray, ... 

  // ... 

public: 

  static int getBarColor();  

  static void setBarColor(int color); 

  // ... 

}; 
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Static members: an example  

• We have to initialize a static 

variable globally.  

 

• To access static members, use 
class name::member name. 

int main() 

{ 

  Window w; // not used 

  cout << Window::getBarColor(); 

  cout << endl; 

  Window::setBarColor(1); 

  return 0;  

} 

int Window::barColor = 0; // default 

 

int Window::getBarColor() 

{ 

  return barColor; 

} 

 

void Window::setBarColor(int color) 

{ 

  barColor = color; 

} 
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Static members 

• Recall that we have four types of members:  

– Instance variables and instance functions.  

– Static variables and static functions.  

• Some rules regarding static members:  

– We may access a static member inside an instance function.  

– We cannot access an instance member inside a static function.  

– Though not suggested, we may access a static member through an object.  

Window w; 

cout << w.getBarColor() << endl; 
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Good programming style 

• If one attribute should be identical for all objects, it should be declared as a 

static variable.  

– Do not make it an instance variable and try to maintain consistency.  

• Do not use an object to invoke a static member.  

– This will confuse the reader. 

• Use class name::member name even inside member function definition 

to show that it is a static member.  

int Window::getBarColor() 

{ 

  return Window::barColor; 

} 
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Another way of using static members 

• One may use a static global variable to count the number of times a global 

function is invoked.  

• One may use a static member variable to count for how many times an object 

is created.  

class A 

{ 

private: 

  static int count; 

public: 

  A() { A::count++; } 

  static int getCount()  

  { return A::count; } 

}; 

int A::count = 0; 

 

int main() 

{ 

  A a1, a2, a3; 

  cout << A::getCount() << endl; // 3 

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 9 / 38 

Another way of using static members 

• With the help of the destructor, we may keep a record on the number of active 

(alive) objects.  

class A 

{ 

private: 

  static int count; 

public: 

  A() { A::count++; } 

  ~A() { A::count--; } 

  static int getCount()  

  { return A::count; } 

}; 

int A::count = 0; 

 

int main() 

{ 

  if(true) 

    A a1, a2, a3; 

  cout << A::getCount() << endl; // 0 

  return 0; 

} 
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Object pointers 

• A class is a (self-defined) data type.  

• A pointer may point to any data type.  

– A pointer may point to an object, i.e., store the address of an object.  

• Recall the class MyVector:  
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  MyVector v(5); 

  MyVector* ptrV = &v; // object pointer 

  return 0; 
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Object pointers 

• What we have done is to use an object to invoke instance functions.  

– E.g., a.print() where a is an object and print() is an instance function. 

• If we have a pointer ptrA pointing to the object a, we may write 

(*ptrA).print() to invoke the instance function print().  

– *ptrA returns the object a.  

• To simplify this, C++ offers the member access operator ->.  

– This is specifically for an object pointer to access its members.  

– (*ptrA).print() is equivalent to ptrA->print(). 

– (*ptrA).x is equivalent to ptrA->x. 

 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 13 / 38 

• An example of using an object pointer: 

– new MyVector(5) dynamically allocates a memory space.  

 

 

 

 

 

 

 

  

Object pointers 

int main() 

{ 

  // an object pointer 

  MyVector* ptrV = new MyVector(5);  

  // instance function invocation 

  ptrV->print();  

  delete ptrV; 

  return 0; 

} 

int main() 

{ 

  MyVector v(5); 

  MyVector* ptrV = &v;  

  v.print(); 

  ptrV->print();   

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 14 / 38 

Why object pointers? 

• Object pointers are more useful than pointers for basic data types. Why?  

• Passing a pointer into a function is more efficient than passing the object. 

– A pointer can be much smaller than an object.  

– Copying a pointer is easier than copying an object.  

• Other reasons will be discussed in other lectures. 
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Passing objects into a function 

• Consider a function that takes three vectors and returns their sum.  

 

 

 

 

 

 

 

 

– We need to create four MyVector objects in this function.  

 

MyVector sum 

  (MyVector v1, MyVector v2, MyVector v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

int MyVector::getN()  

{ return n; } 

int MyVector::getM(int i)  

{ return m[i]; } 

MyVector::MyVector 

  (int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 
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Passing object pointers into a function 

• We may pass pointers rather than objects into this function:  

 

 

 

 

 

 

 

 

– We need to create only one MyVector object in this function.  

– Nevertheless, using pointers to access members requires more time.   

 

MyVector sum(MyVector* v1, MyVector* v2, MyVector* v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1->getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1->getM(i) + v2->getM(i) + v3->getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 
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Passing object references  

• We may also pass references:  

 

 

 

 

 

 

 

 

– We create only one MyVector object in this function. 

MyVector cenGrav(MyVector& v1, MyVector& v2, MyVector& v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 
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Constant references  

• While we may want to pass references to save time, we need to protect our 

arguments from being modified.  

 

 

 

 

 

– Save time while being safe!  

• Should we do the same thing when passing object pointers?  

MyVector cenGrav 

  (const MyVector& v1, const MyVector& v2, const MyVector& v3) 

{ 

  // ... 

} 
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Copying an object 

• Consider the following program:  

 

 

 

 

 

 

 

 

 

• Why just one “A” when invoking f()? 

 

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // A 

  return 0; 

} 
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Copying an object 

• In general, when we pass by value, a local variable will be created.  

– When we pass by value for an object, a local object is created.  

– The constructor should be invoked.  

– So why just one “A” when invoking f()?  

• How about this?  

– No constructor is invoked when a4  

is created?  

 

 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n";  

  A a4 = a1; // nothing! 

  return 0; 

} 
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Copying an object 

• Creating an object by “copying” an object is a special operation.  

– When we pass an object into a function using the  

call-by-value mechanism.  

– When we assign an object to another object.  

– When we create an object with another object as the  

argument of the constructor.  

• When this happens, the copy constructor will be invoked.  

– If the programmer does not define one, the compiler adds a default copy 

constructor (which of course does not print out anything) into the class.  

– The default copy constructor simply copies all member variables one by one, 

regardless of the variable types.  

 

 

 

f(a1, a2, a3); 

A a4 = a1; 

A a5(a1); 
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Copy constructors 

• We may implement our own copy constructor.  

• In the C++ standard, the parameter must be a constant reference.  

– If calling by value, it will invoke itself infinitely many times.  

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

  A(const A& a) { cout << "a"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // aaaA 

  return 0; 

} 
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Copy constructors for MyVector 

• For MyVector, we may implement a copy constructor as:  

 

 

 

 

 

– This has nothing different from the default copy constructor.  

 

MyVector::MyVector(const MyVector& v) 

{ 

  n = v.n; 

  m = v.m; // copying the address in v.m to m 

} 

int main() 

{ 

  MyVector v1(5, 1); 

  MyVector v2(v1); // what is bad?  

} 
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Shallow copy 

• If no member variable is an array/pointer, the default copy constructor is fine.  

• If there is any array or pointer member variable, the default copy constructor 

does “shallow copy”.  

– And two different vectors may share the same space for values.  

– Modifying one vector affects the other!  

MyVector::MyVector(const MyVector& v) 

{ 

  n = v.n; 

  m = v.m; // shallow copy 

} 
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Deep copy 

• To correctly copy a vector (by creating new values), we need to write our own 

copy constructor.  

• We say that we implement “deep copy” by ourselves.  

– In the self-defined copy constructor, we manually create another dynamic 

array, set its elements’ values according to the original array, and use m to 

record its address.  

MyVector::MyVector(const MyVector& v) 

{ 

  n = v.n; 

  m = new int[n]; // deep copy 

  for(int i = 0; i < n; i++) 

    m[i] = v.m[i]; 

} 
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Getters and setters 

• In most cases, instance variables are private.  

• For them to be accessed, sometimes people 

implement getters and setters for them.  

– A getter simply returns the value of a private 

instance variable.  

– A setter simply modifies a private instance 

variables to a given value.  

• What are the benefits and costs for having getters and 

setters?  

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

 int getN() { 

    return n; 

  } 

  void setN(int v) { 

    n = v; 

  } 

}; 
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friend for functions and classes 

• To “open” private members, another way is to declare “friends.” 

• One class can allow its friends to access its private members. 

• Its friends can be global functions or other classes.  

– Then inside test() and member functions of  

Test, those private members of MyVector can  

be accessed.  

– MyVector cannot access Test’s members.  

• A friend can be declared in either the public or  

private section. It does not matter.  

• A class must declare its friends by itself.  

– One cannot declare itself as another one’s friend!  

class MyVector 

{ 

  // ... 

friend void test();  

friend class Test; 

}; 
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friend: an example 

 

 

void test() { 

  MyVector v; 

  v.n = 100; // syntax error if not a friend 

  cout << v.n; // syntax error if not a friend 

} 

class Test { 

public: 

  void test(MyVector v) { 

    v.n = 200; // syntax error if not a friend 

    cout << v.n; // syntax error if not a friend 

  } 

}; 
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friend for functions and classes 

• Declare friends only if data hiding is preserved.  

– Do not set everything public!  

– Use structures rather than classes when nothing should be private.  

– Write appropriate public member functions (e.g., getters and setters).  

• friend may also help you hide data. 

– If a private member should be accessed only by another class/function, we 

should declare a friend instead of writing a getter/setter.  
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this 

• When you create an object, it 

occupies a memory space.  

• Inside an instance function, 
this is a pointer storing the 

address of that object.  

– this is a C++ keyword.  

• When the compiler reads 
this, it looks at the memory 

space to find the object.  

• The two implementations are 

identical:  

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < this->n - 1; i++) 

    cout << this->m[i] << ", "; 

  cout << this->m[this->n - 1] << ")\n"; 

} 

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n - 1] << ")\n"; 

} 
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this 

• Suppose that x is an instance variable.  

– Usually you can use x directly instead of this->x. 

– However, if you want to have a local variable or function parameter 

having the same name as an instance variable, you need this->. 

 

 

 

 

 

• A local variable hides the instance variable with the same name.  

– this->x is the instance variable and x is the local variable.  

MyVector::MyVector(int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

MyVector::MyVector(int n, int m[]) 

{ 

  this->n = n; 

  for(int i = 0; i < n; i++) 

    this->m[i] = m[i]; 

} 
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Good programming style 

• You may choose to always use this-> when accessing instance variables and 

functions. 

• This will allow other programmers (or yourself in the future) to know they are 

members without looking at the class definition. 
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Constant objects 

• Some variables are by nature constants.  

 

 

• We may also have constant objects.  

 

 

– This is the origin in R3. It should not be modified.  

• Should there be any restriction on instance function invocation?  

const double PI = 3.1416; 

const MyVector ORIGIN_3D(3, 0); 
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Constant objects 

• A constant object cannot invoke a function 

that modifies its instance variables.  

– In C++, functions that may be invoked 

by a constant object must be declared 

as a constant instance function.  

• For a constant instance function: 

– It can be called by non-constant objects.  

– It cannot modify any instance variable.  

• For a non-constant instance function:  

– It cannot be called by constant objects 

even if no instance variable is modified.  

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 
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Constant instance variables 

• We may have constant instance variables.  

– E.g., for a vector, its dimension should 

be fixed once it is determined.  

• Obviously, a constant instance variable 

should be initialized in the constructor(s).  

– However:  

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 

MyVector::MyVector() 

{ 

  n = 0; // error!  

  m = NULL; 

} 
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Member initializers 

• For a constant instance variable:  

– It cannot be assigned a value.  

– It cannot be initialized 

globally.  

• We need a member initializer.  

– A specific operation for 

initializing an instance 

variable.  

– Can also be used for 

initializing non-constant 

instance variables.  

 

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector() : n(0) { m = NULL; } 

  MyVector(int dim, int v[]) : n(dim) 

  { 

    for(int i = 0; i < n; i++) 

      m[i] = v[i];     

  }  

  // ... 

}; 
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Initializing constant instance variables 

• Member initializers can also be used when constructors are implemented outside 

the class definition block.  

 

 

 

 

 

 

 

 

• Member initializers are used a lot in general.  

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  // ... 

}; 

MyVector::MyVector() : n(0) 

{ 

  m = NULL; 

} 

MyVector::MyVector(int dim, int v[])  

  : n(dim) 

{ 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 
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