Static members

Obijects and pointers

friend this, and const

Programming Design
Classes (11)
Ling-Chieh Kung

Department of Information Management
National Taiwan University

Programming Design — Classes (I1)

1/38

Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Outline

e Static members

* Objects and pointers
e friend this, and const

Programming Design — Classes (I1) 2138 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Static members

« Aclass contains some instance variables and functions.
— Each object has its own copy of instance variables and functions.

« A member variable/function may be an attribute/operation of a class.
— When the attribute/operation is class-specific rather than object-specific.
— A class-specific attribute/operation should be identical for all objects.

« These variables/functions are called static members.

Programming Design — Classes (I1) 3/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Static members: an example

 |In MS Windows, each window is class Window

an object. o
.] .] private:
— Windows is written in C++, int width;
— Mac OS is written in ?nt ?eig};:;nx
. . in ocatlionk,/
Objective-C. int locationY;
« Each window has some object- int status; // 0: min, 1: usual, 2: max
specific attributes. j‘/:atlc int barColor; // 0: gray, ...
* They also share one class-specific | public:
attribute: the color of their title static int getBarColor();
bars static void setBarColor (int color) ;
/l ...
};

Programming Design — Classes (I1) 4/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Static members: an example

« \We have to initialize a static « To access static members, use
variable globally. class name: :member name.
int Window: :barColor = 0; // default | | int main()
{
int Window: :getBarColor () Window w; // not used
{ cout << Window: :getBarColor() ;
return barColor; cout << endl;
} Window: :setBarColor (1) ;
return O;
void Window: :setBarColor (int color) }
{
barColor = color;
}

Programming Design — Classes (I1) 5/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Static members

« Recall that we have four types of members:
— Instance variables and instance functions.
— Static variables and static functions.
« Some rules regarding static members:
— We may access a static member inside an instance function.
— We cannot access an instance member inside a static function.
— Though not suggested, we may access a static member through an object.

Window w;
cout << w.getBarColor() << endl;

Programming Design — Classes (I1) 6/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Good programming style

 If one attribute should be identical for all objects, it should be declared as a
static variable.

— Do not make it an instance variable and try to maintain consistency.
« Do not use an object to invoke a static member.
— This will confuse the reader.

e Use class name: :member name even inside member function definition
to show that it is a static member.

int Window: :getBarColor ()
{

return Window: :barColor;
}

Programming Design — Classes (I1) 7138 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Another way of using static members

« One may use a static global variable to count the number of times a global
function is invoked.

« One may use a static member variable to count for how many times an object

IS created.
class A int A::count = O;
{
private: int main()
static int count; {
public: A al, a2, a3;
A() { A::count++; } cout << A::getCount() << endl; // 3
static int getCount() return O;
{ return A::count; } }
};

Programming Design — Classes (I1) 8/38 Ling-Chieh Kung (NTU IM)

Static members

Obijects and pointers friend this, and const

Another way of using static members

« With the help of the destructor, we may keep a record on the number of active

(alive) objects.

class A
{
private:
static int count;
public:
A() { A::count++; }
~A() { A::count--; }
static int getCount ()
{ return A::count; }
};

int A::count = 0;

int main()
{
if (true)
A al, a2, a3;
cout << A::getCount() << endl; // O
return O;

}

Programming Design — Classes (I1)

9/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Outline

« Static members
« Objects and pointers
e friend this, and const

Programming Design — Classes (I1) 10/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Object pointers

« Aclassis a (self-defined) data type.

« A pointer may point to any data type.
— A pointer may point to an object, i.e., store the address of an object.
» Recall the class MyVector:

int main()

{
MyVector v (5);
MyVector* ptrV = &v; // object pointer
return O;

}

Programming Design — Classes (I1) 11/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Object pointers

« What we have done is to use an object to invoke instance functions.
— E.gQ., a.print () where ais an object and print () Is an instance function.

 |f we have a pointer ptxA pointing to the object a, we may write
(*ptrA) .print () to invoke the instance function print ().

— *ptrAreturns the object a.
« To simplify this, C++ offers the member access operator ->.
— This is specifically for an object pointer to access its members.
— (*ptrA) .print() Is equivalent to ptrA->print ().
— (*ptrA) .xIs equivalent to ptra->x.

Programming Design — Classes (I1) 12/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Object pointers

« An example of using an object pointer:
— new MyVector (5) dynamically allocates a memory space.

int main() int main()

{ {
// an cbject pointer MyVector v (5) ;
MyVector* ptrV = new MyVector (5) ; MyVector* ptrV = &v;
// instance function invocation v.print() ;
ptrV->print() ; ptrV->print() ;
delete ptrV; return O;
return 0; }

}

Programming Design — Classes (I1) 13/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Why object pointers?

« Object pointers are more useful than pointers for basic data types. Why?
 Passing a pointer into a function is more efficient than passing the object.
— A pointer can be much smaller than an object.
— Copying a pointer is easier than copying an object.
« Other reasons will be discussed in other lectures.

Programming Design — Classes (I1) 14/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Passing objects into a function

* Consider a function that takes three vectors and returns their sum.

MyVector sum int MyVector: :getN()
(MyVector v1, MyVector v2, MyVector v3) { return n; }
{ int MyVector: :getM(int i)
// assume that their dimensions are identical { return m[i]; }
int n = vl.getN(); MyVector: :MyVector
int* sov = new int[n]; (int 4, int v[])
for(int i = 0; i < n; i+) {
sov[i] = vl.getM(i) + v2.getM(i) + v3.getM(i); n=d;
MyVector sumOfVec(n, sov); for(int i = 0; i < n; i++)
return sumOfVec; m[i] = v[i];

} }
— We need to create four MyVector objects in this function.

Programming Design — Classes (I1) 15/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Passing object pointers into a function

« We may pass pointers rather than objects into this function:

MyVector sum(MyVector* vl, MyVector* v2, MyVector* v3)

{
// assume that their dimensions are identical

int n = vl->getN() ;
int* sov = new int[n];
for(int 1 = 0; i < n; i++)
sov[i] = vl->getM(i) + v2->getM(i) + v3->getM(i);
MyVector sumOfVec(n, sov);
return sumOfVec;

}

— We need to create only one MyVector object in this function.
— Nevertheless, using pointers to access members requires more time.

Programming Design — Classes (I1) 16/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Passing object references

« We may also pass references:

MyVector cenGrav (MyVector& vl, MyVectoré& v2, MyVectoré& v3)

{
// assume that their dimensions are identical

int n = vl.getN()
int* sov = new int[n];
for(int i = 0; i < n; i++)
sov[i] = vl.getM(1) + v2.getM(i) + v3.getM(1i);
MyVector sumOfVec(n, sov);
return sumOfVec;

}
— We create only one MyVector object in this function.

Programming Design — Classes (I1) 17/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Constant references

« While we may want to pass references to save time, we need to protect our
arguments from being modified.

MyVector cenGrav

(const MyVector& vl, const MyVector& v2, const MyVector& v3)
{

// ...
}

— Save time while being safe!
« Should we do the same thing when passing object pointers?

Programming Design — Classes (I1) 18/ 38 Ling-Chieh Kung (NTU IM)

Static members

Objects and pointers

friend this, and const

Copying an object

» Consider the following program:

class A

{
private:
int 1;

public:
}:

{
A a4;

}

A() { cout << "A"; }

void £(A al, A a2, A a3)

Why just one “A” when invoking £ () ?

int main()

{
A al, a2, a3; // 2rA
cout << "\n—=\n"';
f(al, a2, a3); // A
return O;

Programming Design — Classes (I1)

19/38

Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Copying an object
* In general, when we pass by value, a local variable will be created.
— When we pass by value for an object, a local object is created.

— The constructor should be invoked.
— So why just one “A” when invoking £ () ?
* How about this? int main ()
— No constructor is invoked when a4 | ¢

IS created? A al, a2, a3; // RrrA
cout << "\n=—=\n";
A a4 = al; // nothing!
return 0;

Programming Design — Classes (I1) 20/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Copying an object

* Creating an object by “copying” an object 1s a special operation.

— When we pass an object into a function using the f(al, a2, a3);
call-by-value mechanism.
— When we assign an object to another object. A a4 = al;

— When we create an object with another object as the
argument of the constructor.

« When this happens, the copy constructor will be invoked.

— If the programmer does not define one, the compiler adds a default copy
constructor (which of course does not print out anything) into the class.

— The default copy constructor simply copies all member variables one by one,
regardless of the variable types.

A a5(al);

Programming Design — Classes (I1) 21 /38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Copy constructors

« We may implement our own copy constructor.
* Inthe C++ standard, the parameter must be a constant reference.
— If calling by value, it will invoke itself infinitely many times.

class A void £(A al, A a2, A a3)
{ {
private: A a4;
int i; }
public: int main()
A() { cout << "A"; } {
A(const A& a) { cout << "a"; } A al, a2, a3; // RArAA
}; cout << "\n=—=\n";
f(al, a2, a3); // aaaA
return O;
}

Programming Design — Classes (I1) 22 /38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Copy constructors for MyVector

« For MyVector, we may implement a copy constructor as:

MyVector: :MyVector (const MyVectoré& v)
{

n=v.n;

m = v.m; // copying the address in v.m to m
}

— This has nothing different from the default copy constructor.

int main()
{

MyVector v1(5, 1);

MyVector v2(vl); // what is bad?
}

Programming Design — Classes (I1) 23 /38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Shallow copy

« If no member variable is an array/pointer, the default copy constructor is fine.

 [f there is any array or pointer member variable, the default copy constructor
does “shallow copy”.

— And two different vectors may share the same space for values.
— Modifying one vector affects the other!

MyVector: :MyVector (const MyVectoré& v)
{

n =v.n;
m = v.m; // shallow copy

Programming Design — Classes (I1) 24 /38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Deep copy

« To correctly copy a vector (by creating new values), we need to write our own
Copy constructor.

« We say that we implement “deep copy” by ourselves.

— In the self-defined copy constructor, we manually create another dynamic
array, set its elements’ values according to the original array, and use mto

record its address.

MyVector: :MyVector (const MyVectoré& v)
{
n=v.n;
m = new int[n]; // deep copy
for(int 1 = 0; 1 < n; it++)
m[i] = v.m[i];

Programming Design — Classes (I1) 25/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Outline

« Static members
* Objects and pointers
e friend this, and const

Programming Design — Classes (I1) 26 /38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Getters and setters

 In most cases, instance variables are private. ‘{zlass MyVector
. For them to be accessed, sometimes people private:
Implement getters and setters for them. int n;
— A getter simply returns the value of a private int* m;
instance variable. public:
— Asetter simply modifies a private instance J.I/lt/', (’Jé;:N() {
variables to a given value. return n;
« What are the benefits and costs for having getters and }
setters? void setN(int v) {
n=vwv,
}
}s

Programming Design — Classes (I1) 27 /38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

friend for functions and classes

* To “open” private members, another way is to declare “friends.”

« One class can allow its friends to access its private members.

* Its friends can be global functions or other classes. | c1ass MyVector
— Then inside test () and member functions of {

Test, those private members of MyVector can /] ...
be accessed. friend void test();
, friend class Test;
— MyVector cannot access Test’s members. };

« Afriend can be declared in either the public or
private section. It does not matter.

« Aclass must declare its friends by itself.
— One cannot declare itself as another one’s friend!

Programming Design — Classes (I1) 28 /38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

friend: an example

void test() {
MyVector v;
v.n = 100; // syntax error if not a friend
cout << v.n; // syntax error if not a friend

}

class Test {
public:
void test (MyVector v) {
v.n = 200; // syntax error if not a friend
cout << v.n; // syntax error if not a friend

}
};

Programming Design — Classes (I1) 29/ 38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

friend for functions and classes

« Declare friends only if data hiding is preserved.

— Do not set everything public!

— Use structures rather than classes when nothing should be private.

— Write appropriate public member functions (e.g., getters and setters).
« friend may also help you hide data.

— If a private member should be accessed only by another class/function, we
should declare a friend instead of writing a getter/setter.

Programming Design — Classes (I1) 30/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

this

* When you create an object, It | yoid MyVector: :print ()

occupies a memory space. {

* Inside an instance function, cout << "("; | |
this Is a pointer storing the for(int 1 = 0; 1 < this—>n - 1; i+)
address of that object. cout << this—>m[i] <«< ", ";

_ cout << this->m[this->n - 1] << ")\n";
— thisis a C++ keyword. }

« When the compiler reads

this, it looks at the memory void MyVector: :print ()
space to find the object. {
_ _ cout << " (";
. The two Implementations are for(int i = 0; i <n - 1; i++)
identical: cout << m[i] << ", ";

cout << m[n - 1] << ")\n";

}

Programming Design — Classes (I1) 31/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

this

e Suppose that x is an instance variable.
— Usually you can use x directly instead of this->x.

— However, if you want to have a local variable or function parameter
having the same name as an instance variable, you need this->.

MyVector: :MyVector (int d, int v[]) MyVector: :MyVector (int n, int m[])
{ {
n =d; this->n = n;
for(int 1 = 0; 1 < n; it++) for(int 1 = 0; 1 < n; i++)
m[i] = v[i]; this->m[i] = m[i];
} }

* Alocal variable hides the instance variable with the same name.
— this->x IS the instance variable and x is the local variable.

Programming Design — Classes (I1) 32/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Good programming style

« You may choose to always use this->when accessing instance variables and
functions.

« This will allow other programmers (or yourself in the future) to know they are
members without looking at the class definition.

Programming Design — Classes (I1) 33/38 Ling-Chieh Kung (NTU IM)

Static members

Obijects and pointers

friend this, and const

Constant objects

« Some variables are by nature constants.

const double PI = 3.1416;

« We may also have constant objects.

const MyVector ORIGIN 3D(3, 0);

— This is the origin in R3. It should not be modified.
« Should there be any restriction on instance function invocation?

Programming Design — Classes (I1)

34/38

Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Constant objects

« A constant object cannot invoke a function | class MyVector
that modifies its instance variables. {

_ In C++, functions that may be invoked | PXivate:

: int n;
by a constant object must be declared int* m:
as a constant instance function. public:

« For a constant instance function: MyVector () ;
— It can be called by non-constant objects, | Myvector(int dim, int v[l);

. . . ~MyVector () ;
— It cannot modify any instance variable. int getN() const;

* For a non-constant instance function: int getM() const;

— It cannot be called by constant objects |~ Void PEint();
even if no instance variable is modified. |}’

Programming Design — Classes (I1) 35/38 Ling-Chieh Kung (NTU IM)

Static members Objects and pointers friend this, and const

Constant Instance variables

« We may have constant instance variables. | class MyVector

— E.g., for a vector, its dimension should { _ '
be fixed once it is determined. private:

_ _ _ const int n;
« Obviously, a constant instance variable int* m;

should be initialized in the constructor(s). public:
— However: MyVector () ;
MyVector (int dim, int v[]);
MyVector: :MyVector () ~MyVector () ;
{ int getN() const;
n =0; // error! int getM() const;
\ m = NULL; void print() ;

Programming Design — Classes (I1) 36/38 Ling-Chieh Kung (NTU IM)

Static members

Objects and pointers

friend this, and const

Member initializers

 For a constant instance variable:
— It cannot be assigned a value.

— |t cannot be Initialized
globally.

« We need a member initializer.

— A specific operation for
Initializing an instance
variable.

— Can also be used for

class MyVector
{
private:
const int n;
int* m;
public:
MyVector() : n(0) { m = NULL; }
MyVector (int dim, int v[]) : n(dim)
{
for(int i = 0; 1 < n; i++)
m[i] = v[i];

initializing non-constant }
instance variables. /] ...
};
Programming Design — Classes (I1) 37/38 Ling-Chieh Kung (NTU IM) |

Static members Objects and pointers friend this, and const

Initializing constant instance variables

« Member initializers can also be used when constructors are implemented outside
the class definition block.

MyVector: :MyVector () : n(0) class MyVector
{ {
m = NULL; private:
} const int n;
MyVector: :MyVector (int dim, int v[]) int* m;
: n(dim) public:
{ MyVector () ;
for(int 1 = 0; 1 < n; i++) MyVector (int dim, int v[]);
m[i] = v[i]; // ...
} };

« Member initializers are used a lot in general.

Programming Design — Classes (I1) 38/38 Ling-Chieh Kung (NTU IM)

