
Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 1 / 38 

Programming Design 

Classes (II) 

Ling-Chieh Kung 

 
Department of Information Management 

National Taiwan University 

 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 2 / 38 

Outline 

• Static members 

• Objects and pointers 

• friend, this, and const 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 3 / 38 

Static members    

• A class contains some instance variables and functions.  

– Each object has its own copy of instance variables and functions.  

• A member variable/function may be an attribute/operation of a class.  

– When the attribute/operation is class-specific rather than object-specific.  

– A class-specific attribute/operation should be identical for all objects.  

• These variables/functions are called static members.  

 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 4 / 38 

• In MS Windows, each window is 

an object.  

– Windows is written in C++.  

– Mac OS is written in 

Objective-C.  

• Each window has some object-

specific attributes.  

• They also share one class-specific 

attribute: the color of their title 

bars.  

Static members: an example   

class Window 

{ 

private: 

  int width; 

  int height; 

  int locationX; 

  int locationY;  

  int status; // 0: min, 1: usual, 2: max 

  static int barColor; // 0: gray, ... 

  // ... 

public: 

  static int getBarColor();  

  static void setBarColor(int color); 

  // ... 

}; 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 5 / 38 

Static members: an example  

• We have to initialize a static 

variable globally.  

 

• To access static members, use 
class name::member name. 

int main() 

{ 

  Window w; // not used 

  cout << Window::getBarColor(); 

  cout << endl; 

  Window::setBarColor(1); 

  return 0;  

} 

int Window::barColor = 0; // default 

 

int Window::getBarColor() 

{ 

  return barColor; 

} 

 

void Window::setBarColor(int color) 

{ 

  barColor = color; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 6 / 38 

Static members 

• Recall that we have four types of members:  

– Instance variables and instance functions.  

– Static variables and static functions.  

• Some rules regarding static members:  

– We may access a static member inside an instance function.  

– We cannot access an instance member inside a static function.  

– Though not suggested, we may access a static member through an object.  

Window w; 

cout << w.getBarColor() << endl; 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 7 / 38 

Good programming style 

• If one attribute should be identical for all objects, it should be declared as a 

static variable.  

– Do not make it an instance variable and try to maintain consistency.  

• Do not use an object to invoke a static member.  

– This will confuse the reader. 

• Use class name::member name even inside member function definition 

to show that it is a static member.  

int Window::getBarColor() 

{ 

  return Window::barColor; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 8 / 38 

Another way of using static members 

• One may use a static global variable to count the number of times a global 

function is invoked.  

• One may use a static member variable to count for how many times an object 

is created.  

class A 

{ 

private: 

  static int count; 

public: 

  A() { A::count++; } 

  static int getCount()  

  { return A::count; } 

}; 

int A::count = 0; 

 

int main() 

{ 

  A a1, a2, a3; 

  cout << A::getCount() << endl; // 3 

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 9 / 38 

Another way of using static members 

• With the help of the destructor, we may keep a record on the number of active 

(alive) objects.  

class A 

{ 

private: 

  static int count; 

public: 

  A() { A::count++; } 

  ~A() { A::count--; } 

  static int getCount()  

  { return A::count; } 

}; 

int A::count = 0; 

 

int main() 

{ 

  if(true) 

    A a1, a2, a3; 

  cout << A::getCount() << endl; // 0 

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 10 / 38 

Outline 

• Static members 

• Objects and pointers 

• friend, this, and const 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 11 / 38 

Object pointers 

• A class is a (self-defined) data type.  

• A pointer may point to any data type.  

– A pointer may point to an object, i.e., store the address of an object.  

• Recall the class MyVector:  

 

Static members Objects and pointers friend, this, and const 

int main() 

{ 

  MyVector v(5); 

  MyVector* ptrV = &v; // object pointer 

  return 0; 

} 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 12 / 38 

Object pointers 

• What we have done is to use an object to invoke instance functions.  

– E.g., a.print() where a is an object and print() is an instance function. 

• If we have a pointer ptrA pointing to the object a, we may write 

(*ptrA).print() to invoke the instance function print().  

– *ptrA returns the object a.  

• To simplify this, C++ offers the member access operator ->.  

– This is specifically for an object pointer to access its members.  

– (*ptrA).print() is equivalent to ptrA->print(). 

– (*ptrA).x is equivalent to ptrA->x. 

 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 13 / 38 

• An example of using an object pointer: 

– new MyVector(5) dynamically allocates a memory space.  

 

 

 

 

 

 

 

  

Object pointers 

int main() 

{ 

  // an object pointer 

  MyVector* ptrV = new MyVector(5);  

  // instance function invocation 

  ptrV->print();  

  delete ptrV; 

  return 0; 

} 

int main() 

{ 

  MyVector v(5); 

  MyVector* ptrV = &v;  

  v.print(); 

  ptrV->print();   

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 14 / 38 

Why object pointers? 

• Object pointers are more useful than pointers for basic data types. Why?  

• Passing a pointer into a function is more efficient than passing the object. 

– A pointer can be much smaller than an object.  

– Copying a pointer is easier than copying an object.  

• Other reasons will be discussed in other lectures. 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 15 / 38 

Passing objects into a function 

• Consider a function that takes three vectors and returns their sum.  

 

 

 

 

 

 

 

 

– We need to create four MyVector objects in this function.  

 

MyVector sum 

  (MyVector v1, MyVector v2, MyVector v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

int MyVector::getN()  

{ return n; } 

int MyVector::getM(int i)  

{ return m[i]; } 

MyVector::MyVector 

  (int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 16 / 38 

Passing object pointers into a function 

• We may pass pointers rather than objects into this function:  

 

 

 

 

 

 

 

 

– We need to create only one MyVector object in this function.  

– Nevertheless, using pointers to access members requires more time.   

 

MyVector sum(MyVector* v1, MyVector* v2, MyVector* v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1->getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1->getM(i) + v2->getM(i) + v3->getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 17 / 38 

Passing object references  

• We may also pass references:  

 

 

 

 

 

 

 

 

– We create only one MyVector object in this function. 

MyVector cenGrav(MyVector& v1, MyVector& v2, MyVector& v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 18 / 38 

Constant references  

• While we may want to pass references to save time, we need to protect our 

arguments from being modified.  

 

 

 

 

 

– Save time while being safe!  

• Should we do the same thing when passing object pointers?  

MyVector cenGrav 

  (const MyVector& v1, const MyVector& v2, const MyVector& v3) 

{ 

  // ... 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 19 / 38 

Copying an object 

• Consider the following program:  

 

 

 

 

 

 

 

 

 

• Why just one “A” when invoking f()? 

 

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // A 

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 20 / 38 

Copying an object 

• In general, when we pass by value, a local variable will be created.  

– When we pass by value for an object, a local object is created.  

– The constructor should be invoked.  

– So why just one “A” when invoking f()?  

• How about this?  

– No constructor is invoked when a4  

is created?  

 

 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n";  

  A a4 = a1; // nothing! 

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 21 / 38 

Copying an object 

• Creating an object by “copying” an object is a special operation.  

– When we pass an object into a function using the  

call-by-value mechanism.  

– When we assign an object to another object.  

– When we create an object with another object as the  

argument of the constructor.  

• When this happens, the copy constructor will be invoked.  

– If the programmer does not define one, the compiler adds a default copy 

constructor (which of course does not print out anything) into the class.  

– The default copy constructor simply copies all member variables one by one, 

regardless of the variable types.  

 

 

 

f(a1, a2, a3); 

A a4 = a1; 

A a5(a1); 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 22 / 38 

Copy constructors 

• We may implement our own copy constructor.  

• In the C++ standard, the parameter must be a constant reference.  

– If calling by value, it will invoke itself infinitely many times.  

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

  A(const A& a) { cout << "a"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // aaaA 

  return 0; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 23 / 38 

Copy constructors for MyVector 

• For MyVector, we may implement a copy constructor as:  

 

 

 

 

 

– This has nothing different from the default copy constructor.  

 

MyVector::MyVector(const MyVector& v) 

{ 

  n = v.n; 

  m = v.m; // copying the address in v.m to m 

} 

int main() 

{ 

  MyVector v1(5, 1); 

  MyVector v2(v1); // what is bad?  

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 24 / 38 

Shallow copy 

• If no member variable is an array/pointer, the default copy constructor is fine.  

• If there is any array or pointer member variable, the default copy constructor 

does “shallow copy”.  

– And two different vectors may share the same space for values.  

– Modifying one vector affects the other!  

MyVector::MyVector(const MyVector& v) 

{ 

  n = v.n; 

  m = v.m; // shallow copy 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 25 / 38 

Deep copy 

• To correctly copy a vector (by creating new values), we need to write our own 

copy constructor.  

• We say that we implement “deep copy” by ourselves.  

– In the self-defined copy constructor, we manually create another dynamic 

array, set its elements’ values according to the original array, and use m to 

record its address.  

MyVector::MyVector(const MyVector& v) 

{ 

  n = v.n; 

  m = new int[n]; // deep copy 

  for(int i = 0; i < n; i++) 

    m[i] = v.m[i]; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 26 / 38 

Outline 

• Static members 

• Objects and pointers 

• friend, this, and const 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 27 / 38 

Getters and setters 

• In most cases, instance variables are private.  

• For them to be accessed, sometimes people 

implement getters and setters for them.  

– A getter simply returns the value of a private 

instance variable.  

– A setter simply modifies a private instance 

variables to a given value.  

• What are the benefits and costs for having getters and 

setters?  

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

 int getN() { 

    return n; 

  } 

  void setN(int v) { 

    n = v; 

  } 

}; 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 28 / 38 

friend for functions and classes 

• To “open” private members, another way is to declare “friends.” 

• One class can allow its friends to access its private members. 

• Its friends can be global functions or other classes.  

– Then inside test() and member functions of  

Test, those private members of MyVector can  

be accessed.  

– MyVector cannot access Test’s members.  

• A friend can be declared in either the public or  

private section. It does not matter.  

• A class must declare its friends by itself.  

– One cannot declare itself as another one’s friend!  

class MyVector 

{ 

  // ... 

friend void test();  

friend class Test; 

}; 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 29 / 38 

friend: an example 

 

 

void test() { 

  MyVector v; 

  v.n = 100; // syntax error if not a friend 

  cout << v.n; // syntax error if not a friend 

} 

class Test { 

public: 

  void test(MyVector v) { 

    v.n = 200; // syntax error if not a friend 

    cout << v.n; // syntax error if not a friend 

  } 

}; 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 30 / 38 

friend for functions and classes 

• Declare friends only if data hiding is preserved.  

– Do not set everything public!  

– Use structures rather than classes when nothing should be private.  

– Write appropriate public member functions (e.g., getters and setters).  

• friend may also help you hide data. 

– If a private member should be accessed only by another class/function, we 

should declare a friend instead of writing a getter/setter.  

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 31 / 38 

this 

• When you create an object, it 

occupies a memory space.  

• Inside an instance function, 
this is a pointer storing the 

address of that object.  

– this is a C++ keyword.  

• When the compiler reads 
this, it looks at the memory 

space to find the object.  

• The two implementations are 

identical:  

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < this->n - 1; i++) 

    cout << this->m[i] << ", "; 

  cout << this->m[this->n - 1] << ")\n"; 

} 

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n - 1] << ")\n"; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 32 / 38 

this 

• Suppose that x is an instance variable.  

– Usually you can use x directly instead of this->x. 

– However, if you want to have a local variable or function parameter 

having the same name as an instance variable, you need this->. 

 

 

 

 

 

• A local variable hides the instance variable with the same name.  

– this->x is the instance variable and x is the local variable.  

MyVector::MyVector(int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

MyVector::MyVector(int n, int m[]) 

{ 

  this->n = n; 

  for(int i = 0; i < n; i++) 

    this->m[i] = m[i]; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 33 / 38 

Good programming style 

• You may choose to always use this-> when accessing instance variables and 

functions. 

• This will allow other programmers (or yourself in the future) to know they are 

members without looking at the class definition. 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 34 / 38 

Constant objects 

• Some variables are by nature constants.  

 

 

• We may also have constant objects.  

 

 

– This is the origin in R3. It should not be modified.  

• Should there be any restriction on instance function invocation?  

const double PI = 3.1416; 

const MyVector ORIGIN_3D(3, 0); 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 35 / 38 

Constant objects 

• A constant object cannot invoke a function 

that modifies its instance variables.  

– In C++, functions that may be invoked 

by a constant object must be declared 

as a constant instance function.  

• For a constant instance function: 

– It can be called by non-constant objects.  

– It cannot modify any instance variable.  

• For a non-constant instance function:  

– It cannot be called by constant objects 

even if no instance variable is modified.  

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 36 / 38 

Constant instance variables 

• We may have constant instance variables.  

– E.g., for a vector, its dimension should 

be fixed once it is determined.  

• Obviously, a constant instance variable 

should be initialized in the constructor(s).  

– However:  

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 

MyVector::MyVector() 

{ 

  n = 0; // error!  

  m = NULL; 

} 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 37 / 38 

Member initializers 

• For a constant instance variable:  

– It cannot be assigned a value.  

– It cannot be initialized 

globally.  

• We need a member initializer.  

– A specific operation for 

initializing an instance 

variable.  

– Can also be used for 

initializing non-constant 

instance variables.  

 

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector() : n(0) { m = NULL; } 

  MyVector(int dim, int v[]) : n(dim) 

  { 

    for(int i = 0; i < n; i++) 

      m[i] = v[i];     

  }  

  // ... 

}; 

Static members Objects and pointers friend, this, and const 



Ling-Chieh Kung (NTU IM) Programming Design – Classes (II) 38 / 38 

Initializing constant instance variables 

• Member initializers can also be used when constructors are implemented outside 

the class definition block.  

 

 

 

 

 

 

 

 

• Member initializers are used a lot in general.  

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  // ... 

}; 

MyVector::MyVector() : n(0) 

{ 

  m = NULL; 

} 

MyVector::MyVector(int dim, int v[])  

  : n(dim) 

{ 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

Static members Objects and pointers friend, this, and const 


