
Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 1 / 38

Programming Design

Operator Overloading

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 2 / 38

Outline

• Motivations and basic concepts

• Overloading comparison and indexing operators

• Overloading assignment and self-assignment operators

• Overloading addition operators

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 3 / 38

Recall our MyVector class

class MyVector

{

private:

 int n;

 double* m;

public:

 MyVector() : n(0), m(NULL) { };

 MyVector(int n, double m[]);

 MyVector(const MyVector& v);

 ~MyVector() { delete [] m; }

 void print() const;

};

MyVector::MyVector(int n, double m[])

{

 this->n = n;

 this->m = new double[n];

 for(int i = 0; i < n; i++)

 this->m[i] = m[i];

}

MyVector::MyVector(const MyVector& v)

{

 this->n = v.n;

 this->m = new double[n];

 for(int i = 0; i < n; i++)

 this->m[i] = v.m[i];

}

void MyVector::print() const

{

 cout << "(";

 for(int i = 0; i < n - 1; i++)

 cout << m[i] << ", ";

 cout << m[n-1] << ")\n";

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 4 / 38

Comparing MyVector objects

• When we have many vectors, we may need to compare them.

• For vectors u and v:

– u = v if their dimensions are equal and ui = vi for all i.

– u < v if their dimensions are equal and ui < vi for all i.

– u ≤ v if their dimensions are equal and ui ≤ vi for all i.

• How to add member functions that do comparisons?

– Naturally, they should be instance rather than static functions.

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 5 / 38

Member function isEqual()

 class MyVector
{

private:

 int n;

 double* m;

public:

 MyVector() : n(0), m(NULL) { };

 MyVector(int n, double m[]);

 MyVector(const MyVector& v);

 ~MyVector() { delete [] m; }

 void print() const;

 bool isEqual(const MyVector& v) const;

};

bool MyVector::isEqual(const MyVector& v) const

{

 if(this->n != v.n)

 return false;

 else

 {

 for(int i = 0; i < n; i++)

 {

 if(this->m[i] != v.m[i])

 return false;

 }

 }

 return true;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 6 / 38

Member function isEqual()

• The ternary operator “? :” can be used to

condense a program.

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 const MyVector a1(5, d1);

 double d2[4] = {1, 2, 3, 4};

 const MyVector a2(4, d2);

 const MyVector a3(a1);

 a1.isEqual(a2) ? cout << "Y\n" : cout << "N\n";

 a1.isEqual(a3) ? cout << "Y\n" : cout << "N\n";

 return 0;

}

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 const MyVector a1(5, d1);

 double d2[4] = {1, 2, 3, 4};

 const MyVector a2(4, d2);

 const MyVector a3(a1);

 if(a1.isEqual(a2))

 cout << "Y\n";

 else

 cout << "N\n"; // N

 if(a1.isEqual(a3))

 cout << "Y\n"; // Y

 else

 cout << "N\n";

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 7 / 38

isEqual() is fine, but …

• Adding the instance function isEqual() is fine.

– But it is not intuitive.

– If we can write if(a1 == a2), it will be great!

• Of course we cannot:

– The compiler does not know what to do to this statement.

– We need to define == for MyVector just as we define member functions.

• In fact, == has been overloaded for different data types.

– We may compare two ints, two doubles, one int and one double, etc.

– We will now define how == should compare two MyVectors.

• This is operator overloading.

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 8 / 38

Operator overloading

• Most operators (if not all) have been overloaded in the C++ standard.

– E.g., the division operator / has been overloaded.

– Divisions between integers is just different from divisions fractional values!

• Overloading operators for self-defined classes are not required.

– Each overloaded operator can be replaced by an instance function.

– However, it often makes programs clearer and the class easier to use.

• Some restrictions:

– Not all operators can be overloaded (see your textbook).

– The number of operands for an operator cannot be modified.

– New operators cannot be created.

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 9 / 38

Outline

• Motivations and basic concepts

• Overloading comparison and indexing operators

• Overloading assignment and self-assignment operators

• Overloading addition operators

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 10 / 38

Overloading an operator

• An operator is overloaded by “implementing a special instance function”.

– It cannot be implemented as a static function.

• Let op be the operator to be overloaded, the “special instance function” is

always named

– The keyword operator is used for overloading operators.

• Let’s overload == for MyVector.

operatorop

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 11 / 38

Overloading ==

• Recall that we defined isEqual():

class MyVector

{

private:

 int n;

 double* m;

public:

 MyVector() : n(0), m(NULL) { };

 MyVector(int n, double m[]);

 MyVector(const MyVector& v);

 ~MyVector() { delete [] m; }

 void print() const;

 bool isEqual(const MyVector& v) const;

};

bool MyVector::isEqual(const MyVector& v) const

{

 if(this->n != v.n)

 return false;

 else

 {

 for(int i = 0; i < n; i++)

 {

 if(this->m[i] != v.m[i])

 return false;

 }

 }

 return true;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 12 / 38

Overloading ==

• To overload ==, simply do this:

• So easy!

class MyVector

{

private:

 int n;

 double* m;

public:

 MyVector() : n(0), m(NULL) { };

 MyVector(int n, double m[]);

 MyVector(const MyVector& v);

 ~MyVector() { delete [] m; }

 void print() const;

 bool operator==(const MyVector& v) const;

};

bool MyVector::operator==(const MyVector& v) const

{

 if(this->n != v.n)

 return false;

 else

 {

 for(int i = 0; i < n; i++)

 {

 if(this->m[i] != v.m[i])

 return false;

 }

 }

 return true;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 13 / 38

Invoking overloaded operators

• We are indeed implementing instance functions with special names.

• Regarding invoking these instance functions:

 int main() // without operator overloading

{

 double d1[5] = {1, 2, 3, 4, 5};

 const MyVector a1(5, d1);

 double d2[4] = {1, 2, 3, 4};

 const MyVector a2(4, d2);

 const MyVector a3(a1);

 a1.isEqual(a2) ? cout << "Y\n" : cout << "N\n";

 a1.isEqual(a3) ? cout << "Y\n" : cout << "N\n";

 return 0;

}

int main() // with operator overloading

{

 double d1[5] = {1, 2, 3, 4, 5};

 const MyVector a1(5, d1);

 double d2[4] = {1, 2, 3, 4};

 const MyVector a2(4, d2);

 const MyVector a3(a1);

 a1 == a2 ? cout << "Y\n" : cout << "N\n";

 a1 == a3 ? cout << "Y\n" : cout << "N\n";

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 14 / 38

Invoking overloaded operators

• Interestingly, we may also do:

 int main() // with operator overloading

{

 double d1[5] = {1, 2, 3, 4, 5};

 const MyVector a1(5, d1);

 double d2[4] = {1, 2, 3, 4};

 const MyVector a2(4, d2);

 const MyVector a3(a1);

 a1.operator==(a2) ? cout << "Y\n" : cout << "N\n";

 a1.operator==(a3) ? cout << "Y\n" : cout << "N\n";

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 15 / 38

Overloading <

• Let’s overload <:

• So easy!

class MyVector

{

private:

 int n;

 double* m;

public:

 MyVector() : n(0), m(NULL) { };

 MyVector(int n, double m[]);

 MyVector(const MyVector& v);

 ~MyVector() { delete [] m; }

 void print() const;

 bool operator==(const MyVector& v) const;

 bool operator<(const MyVector& v) const;

};

bool MyVector::operator<(const MyVector& v) const

{

 if(this->n != v.n)

 return false;

 else

 {

 for(int i = 0; i < n; i++)

 {

 if(this->m[i] >= v.m[i])

 return false;

 }

 }

 return true;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 16 / 38

Overloading !=

• To overload !=, let’s utilize the overloaded ==:

• How would you overload >=?

class MyVector

{

 // ...

 bool operator==(const MyVector& v) const;

 bool operator!=(const MyVector& v) const;

};

bool MyVector::operator!=(const MyVector& v) const

{

 if(*this == v)

 return false;

 else

 return true;

 // or return !(*this == v);

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 17 / 38

Parameters for overloaded operators

• The number of parameters is restricted for overloaded operators.

– The types of parameters are not restricted.

– The return type is not restricted.

– What is done is not restricted.

• Always avoid unintuitive

implementations!

class MyVector

{

 // ...

 bool operator==(const MyVector& v) const;

 bool operator==(MyVector v) const;

 void operator==(int i) const

 {

 cout << "...\n";

 } // no error but never do this!

 bool operator==(int i, int j); // error

};

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 18 / 38

Overloading the indexing operator

• Another natural operation that is common for vectors is indexing.

– Given vector v, we want to know/modify the element vi.

• For C++ arrays, we use the indexing operator [].

• May we overload [] for MyVector? Yes!

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 const MyVector a1(5, d1);

 cout << a1[3] << endl; // endl is a new line object

 a1[1] = 4;

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 19 / 38

Overloading the indexing operator

• Let’s overload []:

– exit(1) terminates the program by sending 1 to the operating system.

– return 0 in the main function terminates the program by sending 0.

– 0: Normal termination. Other numbers: different errors.

class MyVector

{

 // ...

 double operator[](int i) const;

};

double MyVector::operator[](int i) const

{

 if(i < 0 || i >= n)

 exit(1); // terminate the program!

 // required <cstdlib>

 return m[i];

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 20 / 38

More are needed for []

• Compiling the program with the main function below results in an error!

• Error: a1[1] is just a literal, not a variable.

– A literal cannot be put at the LHS in an assignment operation!

– Just like 3 = 5 results in an error.

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 MyVector a1(5, d1); // non-const

 cout << a1[3] << endl; // good

 a1[1] = 4; // error!

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 21 / 38

Another overloaded []

• Let’s overload [] into another version:

• The second implementation returns a reference of a member variable.

– Modifying that reference modifies the variable.

class MyVector

{

 // ...

 double operator[](int i) const;

 double& operator[](int i);

};

double MyVector::operator[](int i) const

{

 if(i < 0 || i >= n)

 exit(1);

 return m[i];

}

double& MyVector::operator[](int i)

{

 if(i < 0 || i >= n) // same

 exit(1); // implementation!

 return m[i];

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 22 / 38

Two different []

• Now the program runs successfully!

• There is one last question:

– Which [] is invoked?

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 MyVector a1(5, d1);

 cout << a1[1] << endl; // 2

 a1[1] = 4; // good

 cout << a1[1] << endl; // 4

 return 0;

}

class MyVector

{

 // ...

 double operator[](int i) const;

 double& operator[](int i);

};

double MyVector::operator[](int i) const

{

 if(i < 0 || i >= n)

 exit(1);

 return m[i];

}

double& MyVector::operator[](int i)

{

 if(i < 0 || i >= n)

 exit(1);

 return m[i];

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 23 / 38

Invoking the two []

• The const after the function prototype is the key.

• If there are both a constant and a non-constant version:

– A constant function is invoked by a constant object.

– A non-constant function is invoked by a non-constant object.

• If there is only a non-constant instance function:

– A constant object cannot invoke it.

class MyVector

{

 // ...

 double operator[](int i) const;

 double& operator[](int i);

};

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 24 / 38

Outline

• Motivations and basic concepts

• Overloading comparison and indexing operators

• Overloading assignment and self-assignment operators

• Overloading addition operators

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 25 / 38

Operations that modify the object

• Some operations do not modify the calling object.

– E.g., comparisons and indexing.

• Some operations modify the calling object.

– E.g., assignments and self-assignments.

• Let’s overload the assignment operator = first.

• What do we expect?

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 double d2[4] = {1, 2, 3, 4};

 MyVector a1(5, d1);

 MyVector a2(4, d2);

 a2.print();

 a2 = a1; // assignment

 a2.print();

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 26 / 38

Default assignment operator

• In fact, the assignment operator has been overloaded!

– The compiler adds a default assignment operator into each class.

– It simply copies each instance variable to

its corresponding one.

– Just like the default copy constructor.

• What may be wrong when we run the main

function with the default assignment operator?

– Note the destructor!

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 double d2[4] = {1, 2, 3, 4};

 MyVector a1(5, d1);

 MyVector a2(4, d2);

 a2.print();

 a2 = a1; // dangerous!

 a2.print();

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 27 / 38

Overloading the assignment operator

• The assignment operator must be manually overloaded when there are pointers

in a class.

– Just like the copy constructor.

• Our first implementation:

• How about a1 = a1?

class MyVector

{

 // ...

 void operator=(const MyVector& v);

};

void MyVector::operator=(const MyVector& v)

{

 if(this->n != v.n)

 {

 delete [] this->m;

 this->n = v.n;

 this->m = new double[this->n];

 }

 for(int i = 0; i < n; i++)

 this->m[i] = v.m[i];

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 28 / 38

Overloading the assignment operator

• Our second implementation:

• How about a1 = a2 = a3?

class MyVector

{

 // ...

 void operator=(const MyVector& v);

};

void MyVector::operator=(const MyVector& v)

{

 if(this != &v)

 {

 if(this->n != v.n)

 {

 delete [] this->m;

 this->n = v.n;

 this->m = new double[this->n];

 }

 for(int i = 0; i < n; i++)

 this->m[i] = v.m[i];

 }

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 29 / 38

Overloading the assignment operator

• Our third implementation:

• To avoid (a1 = a2) = a3, we may

return const MyVector&.

class MyVector

{

 // ...

 MyVector& operator=(const MyVector& v);

};

MyVector& MyVector::operator=(const MyVector& v)

{

 if(this != &v)

 {

 if(this->n != v.n)

 {

 delete [] this->m;

 this->n = v.n;

 this->m = new double[this->n];

 }

 for(int i = 0; i < n; i++)

 this->m[i] = v.m[i];

 }

 return *this;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 30 / 38

Preventing assignments and copying

• In some cases, we disallow assignments between objects of a certain class.

– To do so, overload the assignment operator as a private member.

• In some cases, we disallow creating an object by copying another object.

– To do so, implement the copy constructor as a private member.

• The copy constructor, assignment operator, and destructor form a group.

– If there is no pointer, none of them is needed.

– If there is a pointer, all of them are needed.

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 31 / 38

Self-assignment operators

• For vectors, it is often to do arithmetic and assignments.

– Given vectors u and v of the same dimension, the operation u += v makes ui

become ui + vi for all i.

• Let’s overload +=:

– Why returning
const MyVector&?

• Returning MyVector& allows

(a1 += a3)[i].

• Returning const MyVector&

disallows (a1 += a3) = a2.

class MyVector

{

 // ...

 const MyVector& operator+=(const MyVector& v);

};

const MyVector& MyVector::operator+=(const MyVector& v)

{

 if(this->n == v.n)

 {

 for(int i = 0; i < n; i++)

 this->m[i] += v.m[i];

 }

 return *this;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 32 / 38

Outline

• Motivations and basic concepts

• Overloading comparison and indexing operators

• Overloading assignment and self-assignment operators

• Overloading addition operators

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 33 / 38

Arithmetic operators

• Overloading an arithmetic operator is not hard.

• Consider the addition operator + as an example.

– Take const MyVector& as a parameter.

– Add each pair of elements one by one.

– Do not modify the parameter object.

– Return const MyVector to allow a1 + a2 + a3 but disallow

(a1 + a2) = a3.

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 34 / 38

Overloading the addition operator

• Let’s try to do it.

• Why not returning const MyVector&?

– Hint: What will have to sum after the function call is finished?

class MyVector

{

 // ...

 const MyVector operator+(const MyVector& v);

};

const MyVector MyVector::operator+(const MyVector& v)

{

 MyVector sum(*this); // creating a local variable

 sum += v; // using the overloaded +=

 return sum;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 35 / 38

Overloading the addition operator

• We may overload it for

another parameter type:

class MyVector

{

 // ...

 const MyVector operator+(const MyVector& v);

 const MyVector operator+(double d);

};

const MyVector MyVector::operator+(const MyVector& v)

{

 MyVector sum(*this); // creating a local variable

 sum += v; // using the overloaded +=

 return sum;

}

const MyVector MyVector::operator+(double d)

{

 MyVector sum(*this);

 for(int i = 0; i < n; i++)

 sum[i] += d;

 return sum;

}

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 MyVector a1(5, d1);

 MyVector a2(5, d1);

 a1 = a1 + a2; // good

 a1.print();

 a1 = a2 + 4.2; // good

 a1.print();

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 36 / 38

Instance function vs. global function

• One last issue: addition is commutative, but the program below does not run!

• We cannot let a double variable invoke our “instance function operator+”.

• We should overload + as a global function.

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 MyVector a1(5, d1);

 a1 = 4.2 + a1; // bad!

 a1.print();

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 37 / 38

A global-function version

• To overload + as global functions, we need to handle the three combinations:

const MyVector operator+(const MyVector& v, double d)

{

 MyVector sum(v);

 for(int i = 0; i < v.n; i++) // What do we need for this?

 sum[i] += d; // pairwise addition

 return sum;

}

const MyVector operator+(double d, const MyVector& v)

{

 return v + d; // using the previous definition

}

const MyVector operator+(const MyVector& v1, const MyVector& v2)

{

 MyVector sum(v1);

 return sum += v2; // using the overloaded +=

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Ling-Chieh Kung (NTU IM) Programming Design – Operator Overloading 38 / 38

A global-function version

• Now all kinds of addition may be performed:

• Each operator needs a separate consideration.

int main()

{

 double d1[5] = {1, 2, 3, 4, 5};

 MyVector a1(5, d1);

 MyVector a3(a1);

 a3 = 3 + a1 + 4 + a3;

 a3.print();

 return 0;

}

Motivations and basic concepts Comparison and indexing operators

Assignment and self-assignment operators Addition operators

