
Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 1 / 29

Programming Design

Data Structures

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 2 / 29

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 3 / 29

Data structures

• A data structure is a specific way to store data.

• Usually it also provides interfaces for people to access data.

• Real-life examples: A dictionary.

– It stores words.

– It sorts words alphabetically.

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 4 / 29

Data structures

• In large-scale software systems, there are a lot of data. We want to create data

structures to store and manage them.

• We want our data structures to be safe, effective, and efficient

– Encapsulation: People can access data only through managed interfaces.

– We can store and access data correctly.

– The number of steps required for a task is small; consider a dictionary with

words not sorted!

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 5 / 29

Data structures

• An array is a very simple data structure.

• Is it safe, effective, and efficient?

– Safety: Only if suitable interfaces are provided.

– Effectiveness: Only if suitable interfaces are provided.

– Efficiency: To be discussed later.

• Therefore, our first attempt will be to build a “more complicated” data structure

based on an array.

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 6 / 29

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 7 / 29

Lists

• A list is a linear data structure. It stores items in a line.

– E.g., a dictionary, a personal schedule, a team of characters, etc.

• As an example, we will implement a job list, which stores jobs.

• The class JobList will use an array to store jobs.

– Jobs with a smaller index has higher priority.

• More importantly, it will provide interfaces to access those jobs.

– The array will be a private or protected member variable.

– The interfaces will be public member functions.

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 8 / 29

Job

class Job

{ // nothing special

private:

 string name;

 int hour;

public:

 Job() { this->name = ""; this->hour = 0; }

 Job(string name, int hour)

 { this->name = name; this->hour = hour; }

 void setHour(int hour) { this->hour = hour; }

 string getName() { return this->name; }

 double getHour() { return this->hour; }

 void print() {

 cout << "(" << this->name

 << ", " << this->hour << ")";

 }

};

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 9 / 29

JobList

const int MAX_JOBS = 100; // a global variable

class JobList

{

private:

 Job jobs[MAX_JOBS]; // where we store the data

 int count; // other attributes

public:

 JobList();

 // interfaces

 int getCount(); // should we have a setter?

 void print();

 bool insert(Job job, int index);

 Job remove(int index);

};

JobList::JobList() : count(0) {}

int JobList::getCount()

{

 return this->count;

}

void JobList::print()

{

 for(int i = 0; i < this->count; i++)

 {

 cout << "Job " << i + 1 << ": ";

 this->jobs[i].print();

 cout << endl;

 }

}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 10 / 29

JobList::insert() and remove()

bool JobList::insert(Job job, int index)

{

 if(index < 0 || this->count == MAX_JOBS)

 return false; // fail to insert

 else if(index > this->count)

 // insert at the end

 this->jobs[this->count] = job;

 else // usual insertion

 {

 for(int i = count - 1; i >= index; i--)

 this->jobs[i+1] = this->jobs[i];

 this->jobs[index] = job;

 }

 this->count++;

 return true;

}

Job JobList::remove(int index)

{

 Job toRemove; // to be removed and returned

 if(index < 0 || this->count == 0)

 return toRemove; // nothing to remove

 else if(index > this->count) // remove the last one

 toRemove = this->jobs[this->count];

 else // usual removal

 {

 toRemove = this->jobs[index];

 for(int i = index; i < this->count - 1; i++)

 this->jobs[i] = this->jobs[i+1];

 }

 this->count--; // the effective action of removal

 return toRemove;

}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 11 / 29

Remarks

• Is JobList safe, effective, and efficient?

– Safety: People can access these data only through public interfaces.

– Effectiveness: We have implemented fail-safe interfaces.

– Efficiency: Not so efficient! Insertion and removal may need to move all

jobs (i.e., O(n)).

• Drawbacks:

– There is a limit on the total number of jobs.

– A lot of storage spaces are wasted.

• These drawbacks exist for almost every data structure implemented with arrays,

even with dynamic memory allocation.

• We will introduce another “list” that does not use an array.

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 12 / 29

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 13 / 29

Linked lists

• A linked list is a list implemented by using pointers so that “each element has a

pointer pointing to the next element”.

• Advantages:

– No limit on the number of elements stored.

– Dynamically allocate memory spaces. Can save spaces.

– Efficiency may be improved (in some cases).

• Disadvantages:

– Harder to implement.

– Efficiency may be worsen (in some cases).

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 14 / 29

Job (a new definition)

class Job

{

friend class JobLinkedList; // discussed later

private:

 string name;

 int hour;

 Job* next; // pointing to the next job

public:

 // has the next job only if put in a list

 Job() : name(""), hour(0), next(NULL) {}

 Job(string name, int hour)

 : name(name), hour(hour), next(NULL) {}

 void setHour(int hour);

 string getName();

 double getHour();

 void print();

};

void Job::setHour(int hour)

{

 this->hour = hour;

}

string Job::getName()

{

 return this->name;

}

double Job::getHour()

{

 return this->hour;

}

void Job:: print()

{

 cout << "(" << this->name

 << ", " << this->hour << ")";

}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 15 / 29

JobLinkedList

class JobLinkedList

{

protected:

 int count;

 Job* head; // pointing to the first Job

public:

 JobLinkedList() : count(0), head(NULL) {}

 ~JobLinkedList();

 // same interfaces

 int getCount() { return this->count; }

 bool insert(Job job, int index);

 Job remove(int index);

 void print();

};

int JobLinkedList::getCount()

{

 return this->count;

}

void JobLinkedList::print()

{

 Job* temp = this->head;

 for(int i = 0; i < this->count; i++)

 {

 // print out one job

 cout << "Job " << i + 1 << ": ";

 temp->print();

 cout << endl;

 // move to the next job

 temp = temp->next;

 }

}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 16 / 29

JobLinkedList::insert()

bool JobLinkedList::insert(Job job, int index)

{

 Job* toInsert = new Job(job.name, job.hour);

 if(index < 0) // fail-safe

 return false;

 else if(index == 0) // insert it as the head

 {

 if(this->count > 0)

 toInsert->next = this->head;

 this->head = toInsert;

 }

 else // insert it somewhere in the list

 {

 if(index > this->count) // fail-safe

 index = this->count;

 Job* temp = this->head; // find the place

 for(int i = 0; i < index - 1; i++)

 temp = temp->next;

 toInsert->next = temp->next; // insertion

 temp->next = toInsert;

 }

 this->count++;

 return true;

}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 17 / 29

JobLinkedList::remove()

Job JobLinkedList::remove(int index)

{

 Job toRemove;

 if(index < 0 || this->count == 0)

 return toRemove; // return an empty job

 else if(index <= 1)

 {

 toRemove = *(this->head); // return the head

 Job* temp = this->head; // removal

 this->head = temp->next;

 delete temp;

 }

 else

 {

 Job* temp = head; // find the place

 for(int i = 0; i < index - 2; i++)

 temp = temp->next;

 Job* tempNext = temp->next; // removal

 temp->next = tempNext->next;

 toRemove = *tempNext; // return this one

 delete tempNext;

 }

 this->count--;

 toRemove.next = NULL;

 return toRemove;

}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 18 / 29

Remarks

• Common errors:

– If a Job pointer job is NULL, then accessing job->next generates a run-

time error. Set next to NULL to “create” run-time errors.

• In general, a list is a linear data structure. It stores multiple “nodes”, which is

another elementary data structure.

– In a linked list, each node contains a pointer for the next node.

– Because a job linked list “has a” job, we make job linked list as job’s friend.

• For our JobLinkedList:

– There is no limit on the number of nodes stored.

– Spaces are saved by using dynamic memory allocation.

– Efficiency is roughly the same as JobList: Insertion and removal are O(n).

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 19 / 29

Encapsulation

• We implemented two lists:

– JobList: using an array.

– JobLinkedList: using pointers.

• Though the private storages are different, the public interfaces are identical!

– One uses these two classes in the same way.

– Except for JobList there is a limit on the number of jobs.

JobLinkedList(); // or JobList();

int getCount();

bool insert(Job job, int index);

Job remove(int index);

void print();

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 20 / 29

Encapsulation

• One does not need to (also should not) know how the list is implemented.

• One should just know how to use it.

• What if I can see and access the array in JobList?

– I may write codes to access the array directly: The data structure is not safe.

– In the future if the implementation of JobList is modified, I may also need

to modify my codes (even if the interfaces all remain the same).

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 21 / 29

Destructors

• If dynamic memory allocation is

implemented, we need to release those

dynamically-allocated spaces by the

delete statement.

• Consider this main function:

int main()

{

 JobLinkedList jll;

 Job j1("j1", 1), j2("j2", 2), j3("j3", 3);

 // memory spaces are allocated statically

 jll.insert(j1);

 jll.insert(j2);

 jll.insert(j3);

 // 3 new statements are executed

 return 0;

} // no delete statement is executed!

 // a destructor is useful in this case

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 22 / 29

JobLinkedList::~JobLinkedList()

JobLinkedList::~JobLinkedList() // version 1

{

 Job* temp = this->head;

 Job* tempNext = NULL;

 // Do not write "Job* tempNext = this->head->next;"

 // If we do so, what happens on an empty list?

 for(int i = 0; i < this->count; i++)

 {

 tempNext = temp->next;

 delete temp; // release memory

 temp = tempNext;

 }

}

JobLinkedList::~JobLinkedList() // version 2

{

 while(this->count > 0)

 this->remove(0); // release memory

}

JobLinkedList::~JobLinkedList() // version 3

{

 for(int i = 0; i < this->count; i++)

 this->remove(0);

}

// is this OK?

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 23 / 29

Good Programming style

• Be very careful when using pointers.

• Write your codes slowly and as clear as possible.

– Compile and test your program whenever you complete a function!

• When there is a run-time error, check whether you are accessing a NULL pointer.

• Check whether you need a destructor (or a copy constructor or an assignment

operator) when your class has a pointer member.

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 24 / 29

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 25 / 29

Stacks and queues

• A stack is a special list. A queue is another special list.

• Nodes cannot be inserted/removed at any place we want.

– Stack: last-in-first-out (LIFO). A node can be inserted and removed only at

the top of the stack.

– Queue: first-in-first-out (FIFO). A node can be inserted only at the tail and

removed only at the head.

• Many real-life situations can be modeled as stacks or queues.

– The poker game solitaire; the Hanoi tower; function calls in your programs;

calculators; graph traversal: depth-first search (DFS).

– Consumer waiting lines; FIFO job scheduling; topological sorting; graph

traversal: Breadth-first search (BFS).

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 26 / 29

Creating a job stack by inheritance

• Though not realistic, we will implement a job stack.

– The implementation of a job queue is left to you.

• This example shows

– The application of inheritance: Once you have a list, it is very easy to

create a stack or a queue.

– The application of encapsulation: The idea of interfaces.

– The application of protected inheritance: Not all public members of the

parent class should be public for the child class.

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 27 / 29

JobStack

class JobStack : protected JobLinkedList

// protected: we want to hide insert()

// and remove() inherited from JobLinkedList

{

public:

 JobStack();

 ~JobStack();

 void push(Job job);

 Job pop();

 void print();

};

JobStack::JobStack() : JobLinkedList() {}

JobStack::~JobStack() {}

// You need print() due to protected inheritance

void JobStack::print()

{

 JobLinkedList::print();

}
// insert at top (end)
void JobStack::push(Job job)
{
 JobLinkedList::insert(job, this->count);
}

// remove the one at top (end)
Job JobStack::pop()
{
 return JobLinkedList::remove(this->count);
}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 28 / 29

Remarks

• The class JobStack is indeed a stack. It is safe and effective.

• However, it is not very efficient.

– Operations are executed through another class.

– push() and pop() are both O(n).

– With Job* tail (as a new instance variable), they can be both O(1).

• Be careful that insert() and remove() should be hided.

– If you use public inheritance, you may override them.

• Inheriting JobList also creates a safe and effective job stack.

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

Ling-Chieh Kung (NTU IM) Programming Design – Data Structures 29 / 29

Trees

• A list, stack, or queue is a linear (one-dimensional) data structure.

• A tree is a two-dimensional data structure.

• A binary tree is a useful two-dimensional data structure.

 class BTNode

{

private;

 BTNode* left;

 BTNode* right;

 // …

}

Basic ideas Lists: class JobList

Linked lists: JobLinkedList More data structures

