
Programming Design, Spring 2016

Lab Exam 1
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

For all the problems in this exam, you are allowed to use any technique.

Problem 1

(30 points) Given n integers and an integer k, please find the kth largest integer among the n integers.

Input/output formats

There are 15 input files. In each file, there are n + 2 integers. The first integer is n, the second one is
k, and the last n ones are x1, x2, ..., and xn. Two consecutive integers are separated by a white space.
It is known that 1 ≤ n ≤ 200, 1 ≤ k ≤ 200, and 0 ≤ xi ≤ 1000 for all i = 1, 2, ..., n. Your program
should print out the kth largest value among x1, x2, ..., and xn. If k > n, print out −1. For example,
the following input

4 2 5 6 3 4

requires you to print out

5

Grading criteria

30 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set of
outputs gives you 2 points.

Problem 2

(20 points) A basketball team has played n games. This team has exactly seven players, and because
for each game five players must be the starting players, there are

(
7
5

)
= 21 possible starting lineup. The

coach of this team wants to know which starting lineup has the highest winning probability, the number
of games won by this lineup, and the number of games lost by this lineup.

Input/output formats

There are 10 input files. In each file, there are n+ 1 lines. The first line contains a single integer n. It is
known that 1 ≤ n ≤ 200. Each of the last n lines contains two integers, si and ri, separated by a white
space. si ∈ {1, 2, ..., 21} is the ID of the starting lineup of game i, and ri ∈ {0, 1} records the result of
game i. If ri = 1, the team won game i; otherwise, the team lost the game.

For example, the following input

1



6

11 1

2 1

2 0

2 1

4 0

4 1

records the results of six games. Game 1 was won by lineup 11, game 2 was won by lineup 2, game 3 was
lost by lineup 2, ..., and game 6 was won by lineup 4. We may then calculate the winning probabilities
of each lineup: 100% for lineup 11, 66.7% for lineup 2, and 50% for lineup 4. You should print out

11 1 0

to show that lineup 11 has the highest winning probability, it has won 1 game, and it has lost no game.
Two consecutive integers should be separated by a white space. If multiple lineups have the same highest
winning probability, print out the information for the lineup with the smallest lineup ID. Finally, if a
lineup has never been used as a starting lineup, please consider its winning probability as 0.

Grading criteria

20 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set of
outputs gives you 2 points.

Problem 3

(20 points) Similar to the team discussed in Problem 2, another basketball team coach wants to do the
same thing. However, instead of recording lineup IDs for each game, the lineups are recorded by giving
the five starting players a mark that is different from that for the two non-starting players. The coach of
this team wants to know which five players for a starting lineup to have the highest winning probability
(number of wins divided by the number of games played), the number of games won by this lineup, and
the number of games lost by this lineup.

Input/output formats

There are 10 input files. In each file, there are n + 1 lines. The first line contains a single integer n. It
is known that 1 ≤ n ≤ 200. Each of the last n lines contains eight integers, xi,1, xi,2, ..., xi,7, and ri.
Two consecutive integers are separated by a white space. xij ∈ {0, 1} records whether player j plays a
starting player for game i. If xij = 1, player j is a starting player for game i; otherwise, she/he is not.
ri ∈ {0, 1} records the result of game i. If ri = 1, the team won game i; otherwise, the team lost the
game. For example, the following input

6

0 1 0 1 1 1 1 1

0 1 1 1 1 1 0 1

0 1 1 1 1 1 0 0

0 1 1 1 1 1 0 1

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 1

records the results of six games. The lineup with players 2, 4, 5, 6, and 7 won game 1, that with players
2, 3, 4, 5, and 6 won games 2 and 4 but lost game 3, and that with players 1, 2, 3, 4, and 5 6 won game

2



6 but lost game 5. We may then calculate the winning probabilities of each lineup: 100% for the first
one, 66.7% for the second one, and 50% for the last one. The program should print out

2 4 5 6 7 1 0

where the first five integers are the player IDs of the highest-winning-probability lineup, the sixth integer
is the number of games won by this lineup, and the last integer is the number of games lost by this
lineup. Two consecutive integers should be separated by a white space.

If multiple lineups have the same highest winning probability, print out the information for the lineup
whose smallest player IDs is the smallest. If more than one lineups have the same the smallest player
ID, print out the information for the lineup whose second smallest player IDs is the smallest, etc. For
example, if the lineup with players 1, 2, 4, 5, and 7 and that with players 1, 2, 3, 6, 7 have the same
winning probability, print out the information for the latter lineup because 3 < 4. Finally, if a lineup
has never been used as a starting lineup, please consider its winning probability as 0.

Grading criteria

20 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set of
outputs gives you 2 points.

Problem 4

(30 points) Given an integer x0 and an integer sequence (x1, x2, ..., xn), we want to replace xi by x0 for
some i ∈ {1, ..., n} to maximize the length of the longest positive subsequence, which is a subsequence
(xj , xj+1, ..., xk), 1 ≤ j ≤ k ≤ n, satisfying xi > 0 for all i ∈ {j, j + 1, ..., k}. Note that 0 is not
positive. Print out the position to do the replacement and the resulting length of the longest positive
subsequence. If there are multiple positions resulting in the same maximum length, print out the one
having the smallest index. Even if x0 < 0, we still need to replace one element in the sequence by x0.

Input/output formats

There are 15 input files. In each file, there are n + 2 integers. The first integer is n. The second integer
is x0. The last n integers form the sequence (x1, x2, ..., xn). Two consecutive integers are separated by a
white space. It is known that 1 ≤ n ≤ 100 and −100 ≤ xi ≤ 100 for i ∈ {0, 1, ..., n}. Your program needs
to find the smallest i such that (x1, x2, ..., xi−1, x0, xi+1, ..., xn), the new sequence formed by replacing
xi by x0, contains the longest positive subsequence.

For example, the following input

7 2 1 -2 3 -4 5 -6 7

indicates that x0 = 2 and the sequence is (1,−2, 3,−4, 5,−6, 7). The program should print out

2 3

because i = 2 is the smallest i so that replacing xi by x0 results in the longest positive subsequence
(1, 2, 3), whose length is 3. Note that it is 2, instead of 4 or 6, that should be chosen as the replacement
position. Two consecutive integers should be separated by a white space.

Grading criteria

30 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set of
outputs gives you 2 points.

3


