
Programming Design, Spring 2016

Homework 10
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

Please upload one PDF file for Problem 1 and two CPP files for Problems 2 and 3 (optional) to
PDOGS at http://pdogs.ntu.im/judge/. Each student must submit her/his individual work. No hard
copy. No late submission. The due time of this homework is 2:00 am, May 16, 2016. Please answer
in either English or Chinese. The maximum point of this homework is 120.

Before you start, please read Sections 22.1-22.6 and Chapters 9 and 10 of the textbook.1

The TA who generates the testing data and grades this homework is Parker Chiang.

Problem 1

(20 points; 5 points each) Consider Problem 2 below.

(a) (10 points) Consider the class Course. Explain why a programmer should implement its copy
constructor rather than using the default copy constructor. Then implement an appropriate copy
constructor (if you did so in Problem 2, simply copy and paste).

(b) (5 points) Consider the class CourseGrade. One alternative design is to replace Course* ptrCourse

by int courseId. As course IDs do not repeat, this still allow us to identify the correct course
information given an ID. Then why do we use a pointer? Explain the pros and cons of replacing
the address by the ID.

(c) (5 points) Continue from Part (b). Another alternative design is to replace Course* ptrCourse

by Course course. Explain the pros and cons of replacing the address by an object.

Problem 2

(55 points) In an enrollment system, three types of information are records. First is a set of courses, in
which each course has its course ID, number of credits, and course name. Second is a set of students,
in which each student has her/his student ID and name. Finally, we have a set of course-student-grade
tuples, in which each tuple records a grade earned by a student in a course. In this problem, let’s try
to use classes to construct a data structure storing and processing this information. To do so, we define
the following classes (incompletely):

class Course

{

private:

int id;

int credit;

char* name;

};

class CourseGrade

{

private:

Course* ptrCourse;

int grade;

1The textbook is C++ How to Program: Late Objects Version by Deitel and Deitel, seventh edition.

1



};

class Student

{

private:

int id;

char* name;

CourseGrade* cg[10];

};

Each Course object represents a course, and each Student object represents a student. You will need to
create two arrays, one for Course and one for Student. As a students can take at most ten courses (to
simply this problem), we add a pointer array cg for CourseGrade to each student. Each element in cg is
a CourseGrade pointer pointing to a CourseGrade object, which contains a pointer ptrCourse pointing
to a Course object in the course array and the grade earned by the student in that course. Let’s assume
that all the grades are available, i.e., there is no CourseGrade whose grade is missing.

Note 1. In Student, why do we use CourseGrade* rather than simply CourseGrade? First, we want to
save space: For students who do not take 10 courses, we do not need to create 10 CourseGrade objects.
Second, we want to delay the invocation of constructor for CourseGrade. Following the same idea, it is
your discretion whether to create object arrays or pointer arrays. An object array is easy to implement
and access, but a pointer array allows you to delay the invocation of constructors.

You will be given the information of n courses, m students, and k course-student-grade tuples.
Obviously, we have k ≤ nm, and in practice k � nm. This explains why we do not create an n ×m
matrix to store all the grades information: The matrix will be sparse and waste a lot of space. With the
current data structure, we only need 10m CourseGrade variables, which means 20m integers to store all
grades. As long as n > 20, we may save space.

Given the information, your program should rank all students according to their average grades, from
high to low, and print out their names accordingly. If multiple students have the same average grades,
rank them in the alphabetical order (Amy gets a higher rank than Bob, etc.).2

Input/output formats

There are 15 input files. In each file, there are k+3 lines. The first line contains a positive integer n ≤ 1000
and then n ID-credit-name tuples for courses. Each course tuple is given in a pair of parentheses, where
two values are separated by a comma. There is no white space in a tuple. There is no white space
between consecutive tuples. A course ID is a positive integer between 1 and 99999. A course name
contains at most 50 English letters (therefore, no white space). Different courses have different IDs and
names (case-insensitive, so there will not be two courses “Calculus” and “calculus”). A course credit is
either 1, 2, 3, or 4. For example,

3 (10001 ,3 , Programming)(10002 ,3 , Calculus)(201,2, History)

lists the information of three courses. This line contains at most 5000 characters in total.

The second line contains a positive integer m ≤ 1000 and then m ID-name tuple for students. Each
student tuple is given in a pair of parentheses, where two values are separated by a comma. There is no
white space in a tuple. There is no white space between consecutive tuples. A student ID is a positive
integer between 1 and 99999. A student name contains at most 50 English letters (therefore, no white
space). Different courses have different IDs and names (case-insensitive, so there will not be two students
“ikuta” and “Ikuta”). For example,

4 (1,Amy)(2,John)(3,Tom)(4,Bob)

lists the information of four students. This line contains at most 5000 characters in total.

2Simply use strcmp or strncmp to get the alphabetical order!

2



Note 2. Suppose that there is a line of input which consists of an integer, a white space, and then a
string. To read this line into an integer and a C string, we probably write:

int i = 0;

char s[100] = {0};

cin >> i;

cin.getline(s, 100);

cout << i << "---" << s << "\n";

If you try this, and type

123 Hi

what you will see is

123--- Hi

where in s there is a weird white space. The reason is the following. After the execution of the cin >> i;

statement, the input cursor stops at the first non-integer character, which is the white space between 123

and Hi. Then as we read things into a C string, the white space is treated as a part of the string and
stored into s.

To solve this problem, one way is to insert a statement cin.ignore(); in between cin >> i; and
cin.getline(s, 100);. This statement asks the input cursor to skip one character, which is the white
space we do not want. Then s will contain exactly the string we need.

The third line contains an integer k ≤ 10m. Then each of the fourth to (k + 3)th line contains three
integers, which are a course ID, a student ID, and a grade. They together represent a course-student-
grade tuple. The course ID must be the ID of an existing course. The student ID must be the ID of
an existing student. The grade must be within 0 and 100. Two consecutive values are separated by
a comma. A student takes at least one course. No two tuples are about the same pair of course and
student. For example,

7

10001 ,1 ,90

10001 ,4 ,80

10002 ,1 ,92

10001 ,3 ,77

10002 ,3 ,83

10001 ,2 ,20

201,1,88

means that Amy got 90 in Programming, John got 80 in Programming, etc.

Given the input, you need to store the information into objects of the three classes defined in this
problem. After you store this information, you should calculate the average grades for each student
(weighted by course credits, of course), rank students from high to low, and then print out their names,
separated by white spaces.

In the example given above, Amy, John, Tom, and Bob have their average grades as 90.25, 20, 80,
and 80, respectively. A student takes at least one course. If multiple students have the same average
grades, rank them in the alphabetical order (Amy gets a higher rank than Bob, etc.). Therefore, the
output should be

Amy Bob Tom John

3



What should be in your source file

Your .cpp source file should contain C++ codes that will both read testing data and complete the above
task. For this problem, you are allowed to use only techniques covered so far. NO other techniques are
allowed. Finally, you should write relevant comments for your codes.

Grading criteria

You must use the given classes to store the given input information. If you fail to do so, you will get no
point. If you do, you will be graded according to the following rule:

• 45 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set
of outputs gives you 2 points.

• 10 points will be based on how you write your program, including the logic and format. Please try
to write a robust, efficient, and easy-to-read program.

Problem 3

(45 points) This problem is a complication of Problem 2. Now a course name and a student name may
contain white spaces, and course-student-grade tuples may be given with IDs or names. The objective is
also changed. Now a list of p student IDs will be given. The program should then

(
p
2

)
pairs of students

and find the number of dominant relationships. Let xi = (xi
1, x

i
2, ..., x

i
n) be the grade vector of student i,

where xi
j is her/his grade in course j. If she/he did not take that course, let xi

j = −1. We say student i1

dominates student i2 if xi1
j > xi2

j for all j such that xi1
j 6= −1 and xi2

j 6= −1. We say there is a dominant
relationship between students i1 and i2 if either i1 dominates i2 or i2 dominates i1.

In the example given in Problem 2, we have xAmy = (90, 92, 88), xJohn = (20,−1,−1), xTom =
(77, 83,−1), and xBob = (80,−1,−1). Therefore, Amy dominates all the other three students, Bob
dominates Tom and John, and Tom dominates John. Therefore, we have six dominate relationships
among Amy, John, Tom, and Bob. Note that there may be no dominant relationship between two
students. For example, if Mary got 80 in both Programming and Calculus, and Tom does not dominate
Mary while Mary does not dominate Tom. Given a list of p student IDs, you should output the number
of dominant relationships among these p students.

Input/output formats

There are 15 input files. In each file, there are k + 4 lines of input. The first k + 3 lines are given in
the same way as in Problem 2, except that in the fourth to the (k + 3)th lines names may replace IDs.
These given names and IDs are guaranteed to match given courses and students. The last line contains p
students IDs. These must be non-repeating IDs of existing students. Two consecutive IDs are separated
by a white space. Given the input, the output should be the number of dominant relationships among
the p students. For example, if the output is

3 (10001 ,3 ,C Programming)(10002 ,3 , Calculus)(20001 ,2 , History)

5 (1,Amy Wang)(2,John Wong)(3,Tom Wing)(4,Bob Weng)(5, Mary Wung)

9

C Programming ,1,90

10001, Bob Weng ,80

10002 ,1 ,92

C Programming ,3,77

10002, Tom Wing ,83

10001 ,2 ,20

4



20001, Amy Wang ,88

C Programming ,Mary Wung ,90

10002 ,5 ,80

5 3 4 1

then the output should be

4

Note that there is no dominant relationship between Tom and Mary and Amy and Mary.

What should be in your source file

Your .cpp source file should contain C++ codes that will both read testing data and complete the above
task. For this problem, you are allowed to use any technique. You are not even required to use the
classes defined in Problem 2. Finally, you should write relevant comments for your codes.

Grading criteria

45 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set of
outputs gives you 3 points.

5


