Programming Design Algorithms and Recursion

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Outline

- Algorithms and complexity
- Recursion
- Searching and sorting

Introduction

- It is said that:
- Programming $=$ Data structure + Algorithms.
- http://en.wikipedia.org/wiki/Algorithms_\%2B_Data_Structures_\%3D_Progr ams
- To design a program, choose data structures to store your data and choose algorithms to process your data.
- Each of "data structures" and "algorithms" requires one (or more) courses.
- We will only give you very basic ideas.

Algorithms

- Today we talk about algorithms, collections of steps for completing a task.
- In general, an algorithm is used to solve a problem.
- The most common strategy is to divide a problem into small pieces and then solve those subproblems.
- We will introduce recursion, a way to solve a problem based on the solution/outcome of subproblems.
- For a problem, there may be multiple algorithms.
- The first criterion, of course, is correctness.
- Time complexity is typically the next for judging correct algorithms.
- As examples, we introduce two specific problems: searching and sorting.
- Let's watch a video!

Example: listing all prime numbers

- Given an integer n, let's list all the prime numbers no greater than n.
- Consider the following (imprecise) algorithm:
- For each number i no greater than n, check whether it is a prime number.
- To check whether i is a prime number:
- Idea: If any number $j<i$ can divide i, i is not a prime number.
- Algorithm: For each number $j<i$, check whether j divides i. If there is any j that divides i, report no; otherwise, report yes.
- Before we write a program, we typically prefer to formalize our algorithm.
- We write pseudocodes, a description of steps in words organized in a program structure.
- This allows us to ignore the details of implementations.

Example: listing all prime numbers

- One pseudocode for listing all prime numbers no greater than n is:

Given an integer n :
for i from 2 to n
assume that i is a prime number for j from 2 to $i-1$
if j divides i
set i to be a composite number
if i is still considered as prime print i

- Implementation:

```
```

for(int i = 2; i <= n; i++) {

```
```

for(int i = 2; i <= n; i++) {
bool isPrime = true;
bool isPrime = true;
for(int j = 2; j < i; j++) {
for(int j = 2; j < i; j++) {
if(i % j = 0) {
if(i % j = 0) {
isPrime = false;
isPrime = false;
break;
break;
}
}
}
}
if(isPrime = true)
if(isPrime = true)
cout << i << " ";
cout << i << " ";
}

```
```

}

```
```

- Once we have described an algorithm in pseudocodes, implementation is easy.

A full implementation

- Let's modularize our implementation:
- isPrime (int x) determines whether the given integer x is a prime number.

```
bool isPrime(int x)
{
    for(int i = 2; i < x; i++)
    {
        if(x % i = 0)
            return false;
    }
    return true;
}
```

- Now we have a correct algorithm.
- May we improve this algorithm?

```
#include <iostream>
```

\#include <iostream>
using namespace std;
using namespace std;
bool isPrime(int x);
bool isPrime(int x);
int main()
int main()
{
{
int n = 0;
int n = 0;
cin >> n;
cin >> n;
for(int i = 2; i <= n; i++)
for(int i = 2; i <= n; i++)
{
{
if(isPrime(i) = true)
if(isPrime(i) = true)
cout << i << " ";
cout << i << " ";
}
}
return 0;
return 0;
}
}
Metum 0;

```
    Metum 0;
```


Improving our algorithm

- The algorithm can be faster:

```
bool isPrime(int x)
{
    for(int i = 2; i * i <= x; i++)
    {
        if(x % i = 0)
            return false;
    }
    return true;
}
```

- Do not use i <= sqrt(x) (why?).
- We improved the algorithm, not the implementation.
- May we do even better?

Improving our algorithm further

- Let's consider a completely different algorithm:
- Let's start from 2. Actually $2,4,6,8, \ldots$ are all composite numbers.
- For 3, actually $3,6,9, \ldots$ are all composite numbers.
- We may use a bottom-up approach to eliminate composite numbers.
- The pseudocode (with comments):

```
Given a Boolean array }A\mathrm{ of length }
Initialize all elements in A to be true // assuming prime
fori from 2 to n
    if }\mp@subsup{A}{i}{}\mathrm{ is true
        print i
        for j from 1 to [i/j\rfloor// eliminating composite numbers
        Set A[i\timesj] to false
```


Improving our algorithm further

```
#include <iostream>
using namespace std;
const int MAX_LENN = 10000;
void ruleOutPrime
    (int x, bool isPrime[], int n);
int main()
{
    int n = 0;
    cin >> n; // must < 10000
    bool isPrime[MAX_LEN] = {0};
    for(int i = 0; i < n; i++)
        isPrime[i] = true;
```

```
    for(int i = 2; i <= n; i++)
    {
        if(isPrime[i] = true)
        {
            cout << i << " ";
            ruleOutPrime(i, isPrime, n);
        }
    }
    return 0;
}
void ruleOutPrime
    (int x, bool isPrime[], int n)
{
    for(int i = 1; x * i < n; i++)
        isPrime[x * i] = false;
}
```


Complexity

- When all the three algorithms are correct, they are not equally efficient.
- We typically care about the complexity of an algorithm:
- Time complexity: the running time of an algorithm.
- Space complexity: the amount of spaces used by an algorithm.
- Time is typically more critical.
- Algorithm 2 is much faster!

Execution time for listing all primes <= n

Complexity

- Running time may be affected by the hardware, number of programs running at the same time, etc.
- The number of basic operations is a better measurement.
- Basic operations include simple arithmetic, comparisons, etc.
- Convince yourself that algorithm 2 does fewer basic operations.
- The calculation of complexity needs training.
- This will be formally introduced in Discrete Mathematics, Data Structures, and/or Algorithms.

Outline

- Algorithms and complexity
- Recursion
- Searching and sorting

Recursive functions

- A function is recursive if it invokes itself (directly or indirectly).
- The process of using recursive functions is called recursion.
- Why recursion?
- Many problems can be solved by dividing the original problem into one or several smaller pieces of subproblems.
- Typically subproblems are quite similar to the original problem.
- With recursion, we write one function to solve the problem by using the same function to solve subproblems.

Example 1: finding the maximum

- Suppose that we want to find the maximum number in an array $A[1 . . n]$ (which means A is of size n).
- Is there any subproblem whose solution can be utilitzed?
- Subproblem: Finding the maximum in an array with size smaller than n.
- A strategy:
- Subtask 1: First find the maximum of $A[1 . .(n-1)]$.
- Subtask 2: Then compare that with $A[n]$.
- How would you visualize this strategy?
- While subtask 2 is simple, subtask 1 is similar to the original task.
- It can be solved with the same strategy!

Example 1: finding the maximum

- Let's try to implement the strategy.
- First, I know I need to write a function whose header is:

```
double max(double array[], int len);
```

- This function returns the maximum in array (containing len elements).
- I want this to happen, though at this moment I do not know how.
- Now let's implement it:
- If the function really works, subtask 1 can be completed by invoking

```
double subMax = max (array, len - 1);
```

- Subtask 2 is done by comparing subMax and array[len - 1].

Example 1: finding the maximum

- A (wrong) implementation:
- What will happen if we really invoke this function?
- The program will not terminate!
- Even when len is 1 in an invocation, we will still try to invoke max (array, 0).
- For an array whose size is 1:
- That number is the maximum!
- With this, we can add a stopping condition into our function.

```
double max(double array[], int len)
{
    double subMax = max(array, len - 1);
    if(array[len - 1] > subMax)
        return array[len - 1];
    else
        return subMax;
}
int main()
{
    double a[5] = {5, 7, 2, 4, 3};
    cout << max (a, 5);
    return 0;
}
```


Example 1: finding the maximum

- A correct implementation is:
- What is the outcome?

```
int main()
{
    double a[5] = {5, 7, 2, 4, 3};
    cout << max (a, 5);
    return 0;
}
```

- Both else can be removed. Why?

```
double max(double array[], int len)
{
    if(len = 1) // stopping condition
        return array[0];
    else
    {
        // recursive call
        double subMax = max (array, len - 1);
        if (array[len - 1] > subMax)
        return array[len - 1];
        else
            return subMax;
    }
}
```


Example 1: finding the maximum

- Is it okay to remove both else? Why?

```
double max(double array[], int len)
{
    if(len = 1) // stopping condition
        return array[0];
    else
    {
        // recursive call
        double subMax = max (array, len - 1);
        if(array[len - 1] > subMax)
            return array[len - 1];
```

```
double max(double array[], int len)
{
    if(len = 1) // stopping condition
        return array[0];
    // recursive call
    double subMax = max (array, len - 1);
    if(array[len - 1] > subMax)
        return array[len - 1];
    return subMax;
}
```


Example 2: computing factorials

- How to write a function that computes the factorial of n ?
- A subproblem: computing the factorial of $n-1$.
- A strategy: First calculate the factorial of $n-1$, then multiply it with n.

```
int factorial (int n)
{
    if(n = 1) // stopping condition
        return 1;
    else
        // recursive call
        return factorial (n - 1) * n;
}
```


Example 2: computing factorials

- When we invoke this function with argument 4 :
- factorial (4)
$=$ factorial (3) * 4
= (factorial (2) * 3) * 4
$=((f a c t o r i a l(1) * 2) * 3) * 4$
$=((1 * 2) * 3) * 4$
$=(2 * 3) * 4$
$=6$ * 4
$=24$

Example 3: the Fibonacci sequence

- Write a recursive function to find the nth Fibonacci number.
- The Fibonacci sequence is $1,1,2,3,5,8,13,21, \ldots$. Each number is the sum of the two proceeding numbers.
- The nth value can be found once we know the $(n-1)$ th and $(n-2)$ th values.

```
int fib(int n)
{
    if(n = 1)
        return 1;
    else if(n = 2)
        return 1;
    else // two recursive calls
        return (fib(n - 1) + fib(n - 2));
}
```


Some remarks

- There must be a stopping condition in a recursive function. Otherwise, the program will not terminate.
- In many cases, a recursive strategy can also be implemented with loops.
- E.g., writing a loop for finding a maximum and factorial.
- But sometimes it is hard to use loops to imitate a recursive function.
- Compared with an equivalent iterative function, a recursive implementation is usually simpler and easier to understand.
- However, it generally uses more memory spaces and is more time-consuming.
- Invoking functions has some cost.

Complexity issue of recursion

- In some cases, recursion is efficient enough.
- E.g., finding a maximum or calculating the factorial.
- In some cases, however, recursion can be very inefficient!
- E.g., Fibonacci.
- Let's compare the efficiency of two different implementations.

Complexity issue of recursion

- Two implementations:

```
int fib(int n)
{
    if(n=1)
        return 1;
    else if(n = 2)
        return 1;
    else // two recursive calls
        return (fib(n-1) + fib(n-2));
}
```

```
```

double fibRepetitive(int n)

```
```

double fibRepetitive(int n)
{
{
if(n=1 || n= 2)
if(n=1 || n= 2)
return 1;
return 1;
int fib1 = 1, fib2 = 1;
int fib1 = 1, fib2 = 1;
int fib3 = 0;
int fib3 = 0;
for(int i = 2; i < n; i++)
for(int i = 2; i < n; i++)
{
{
fib3 = fib1 + fib2;
fib3 = fib1 + fib2;
fib1 = fib2;
fib1 = fib2;
fib2 = fib3;
fib2 = fib3;
}
}
return fib3;
return fib3;
}

```
```

}

```
```


Complexity issue of recursion

- Which one is faster?

```
int main()
\{
    int \(\mathrm{n}=0\);
    cin >> n;
    cout << fibRepetitive(n) << "\n"; // algorithm 1
    cout << fib(n) << "\n"; // algorithm 2
    return 0;
\}
```


Polynomial time vs. exponential time

- Given n :
- The repetitive way has around $c_{1} n$ steps, where $c_{1}>0$ is a constant.
- The recursive way has around $c_{2} 2^{n}$ steps, where $c_{2}>0$ is a constant.
- When n is large enough, $c_{2} 2^{n}$ is much larger than $c_{1} n$.
- Even if $c_{1} \ll c_{2}$!
- We say the repetitive way is more efficient.
- Technically, we say that:
- The repetitive way is a polynomial-time algorithm
- The recursive way is an exponential-time algorithm.
- In general, an exponential-time algorithm is just too inefficient.

Power of recursion

- Though recursion is sometimes inefficient, typically implementation is easier.
- Let's consider the classic example "Hanoi Tower".
- There are three pillars and disks of different sizes which can slide onto any pillar. Disc i is smaller than disc j if $i<j$.
- A large disc cannot be placed on top of a small disc.
- Initially, all discs are at pillar A. We want to move them to pillar C:
- Only one disk can be moved at a time.
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack.
- Let's watch a video!
- What are the steps that solve the Hanoi Tower problem in the fastest way?

A recursive implementation

```
void hanoi (char from, char via,
        char to, int disc)
{
    if(disc = 1)
        cout << "From " << from
            << " to " << to << "\n";
    else
    {
        hanoi (from, to, via, disc - 1);
        cout << "From " << from
                << " to " << to << "\n";
        hanoi (via, from, to, disc - 1);
    }
}
```

```
#include <iostream>
using namespace std;
int main()
{
    int disc = 0; // number of discs
    cin >> disc;
    char a = 'A', b = 'B', c = 'C';
    hanoi (a, b, c, disc);
    return 0;
}
```

- Is there a good way of solving the Hanoi Tower problem iteratively?

Outline

- Algorithms and complexity
- Recursion
- Searching and sorting

Searching

- One fundamental task in computation is to search for an element.
- We want to determine whether an element exists in a set.
- If yes, we want to locate that element.
- E.g., looking for a string in an article.
- Here we will discuss how to search for an integer in an one-dimensional array.
- Whether the array is sorted makes a big difference.

Searching

- Consider an integer array $A[1 . . n]$ and an integer p.
- How to determine whether p exists in A ?
- If so, where is it?
- Assume that we only need to find one p even if there are multiple.
- Suppose that the array is unsorted.
- One of the most straightforward way is to apply a linear search.
- Compare each element with p one by one, from the first to the last.
- Whenever we find a match, report its location.
- Conclude that p does not exist if we end up with nothing.
- The number of operations we need to execute is roughly proportional to n.

Binary search

- What if the array is sorted?
- We may still apply the linear search.
- However, we may improve the efficiency by implementing a binary search.
- First, we compare p with the median m (e.g., $A[(n+1) / 2]$ if n is odd).
- If p equals m, bingo!
- If $p<m$, we know p must exist in the first half of A if it exists.
- If $p>m$, we know p must exist in the second half of A if it exists.
- For the latter two cases, we will continue searching in the subarray.
- Let's watch a video!

Binary search: pseudocode

```
binarySearch(a sorted array A, search in between from and to, search for p)
if n=1
    return true if }\mp@subsup{A}{\mathrm{ from }}{}=p\mathrm{ ; return false otherwise
else
    let median be floor((from + to) / 2)
    if p=\mp@subsup{A}{median}{}
        return true
    else if p< A median
    return binarySearch(A, from, median, p)
    else
        return binarySearch( }A,\mathrm{ median + 1, to, p)
```


Linear search vs. binary search

- In binary search, the number of instructions to be executed is roughly proportional to $\log _{2} n$.
- So binary search is much more efficient than linear search!
- The difference is huge is the array is large.
- However, binary search is possible only if the array is sorted.
- Is it worthwhile to sort an array before we search it?
- It is natural to implement binary search with recursion.
- A subproblem is to search for the element in one half of the array.
- Binary search can also be implemented with repetition.
- Is it natural to do so?

Norting

- Given a one-dimensional integer array A of size n, how to sort $i t$?
- Given numbers $6,9,3,4$, and 7 , how would you sort them?
- Recall what you typically do when you play poker:
- First put the first number 6 aside.
- Compare the second number 9 with 6 . Because $9>6$, put 9 to the right of 6 .
- Compare the third number 3 with the sorted list (6,9). Because $3<6$, put 3 to the left of 6 .
- Compare 4 with ($3,6,9$). Because $3<4<6$, insert 4 in between 3 and 6 .
- Compare 7 with (3,4, 6, 9). Because $6<7<9$, insert 7 in between 6 and 9 .
- The result is (3, 4, 6, 7, 9).
- Let's watch a video!

Insertion sort

- The above algorithm is called insertion sort.
- The key is to maintain a sorted list.
- Then for each number in the unsorted list, insert it into the proper location so that the sorted list remains sorted.
- How would you implement the insertion sort?
- Recursion or repetition?
- If recursion, what is your strategy?

(Non-repetitive) insertion sort

- The pseudocode:
insertionSort(a non-repetitive array A, the array length n, an index cutoff $<n$)
$/ /$ at any time, $A_{1 . . \text { cutoff }}$ is sorted and $A_{\text {(cutoff }+1) . . n}$ is unsorted
if $A_{\text {cutoff }+1}<A_{1 . \text {.cutoff }}$
let p be 1
else
find p such that $A_{p-1}<A_{\text {cutoff }+1}<A_{p}$ insert $A_{\text {cutoff }+1}$ to A_{p} and shift $A_{p . \text {.cutoff }}$ to $A_{(p+1) . .(\text { cutoff }+1)}$ if cutoff $+1<n$
insertionSort $(A, n$, cutoff +1)
- What if A is repetitive?

Insertion sort

- Roughly how many instructions do we need for insertion sort?
- We need to do n insertions.
- To insert the k th value, we search for a position and shift some elements.
- A linear search: at most k comparisons.
- Shifting: at most k shifts.
- Roughly we need $1+2+\cdots+n$ operations, which is proportional to n^{2}.
- Does binary search help?

Mergesort (Merge sort)

- Insertion sort is simple and fast!
- Not really "fast", but faster than many similar sorting algorithm.
- Because its idea and implementation is simple, it is faster than most algorithms when the array size is small.
- Interestingly, there is another sorting algorithm:
- Its idea is somewhat similar to insertion sort.
- But it is significantly faster for large arrays!
- This algorithm is called mergesort.

Mergesort (Merge sort)

- Recall that in an insertion sort, we need to insert one number into a sorted list for many times.
- A key observation is that "inserting" another sorted list of size k into a sorted list can be faster than inserting k separate numbers one by one!
- So such "inserting" is actually "merging".
- Given an unsorted array, we will:
- First split the array into two parts, the first half and second half.
- Then sort each subarray.
- Finally, merge these two subarrays.
- Mergesort is perfect for recursion!

Mergesort (Merge sort): pseudocode

```
mergeSort(an array }A\mathrm{ , the array length n)
    let median be floor((1+n)/2)
    mergeSort}(\mp@subsup{A}{1..median}{},\mathrm{ median) // now }\mp@subsup{A}{1..median}{}\mathrm{ is sorted
    mergeSort }(\mp@subsup{A}{(\mathrm{ median +1)..n}}{},n-median + 1) // now A Amedian +1)..n is sorted
    merge }\mp@subsup{A}{1..median}{}\mathrm{ and }\mp@subsup{A}{(median +1)..n}{}// how
```


Mergesort (Merge sort)

- Interestingly, insertion sort is a special way of running mergesort.
- Not splitting the array into two halves.
- Instead, splitting it into $A[1 . . n-1]$ and $A[n]$.
- Once we use the "smart split", the efficiency is improved a lot!
- Insertion sort: Roughly proportional to n^{2}.
- Merge sort: Roughly proportional to $n \log n$.
- A simple observation can make a huge difference!

