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Pointers

• A pointer is a variable which stores a memory address.

– An array variable also stores a memory address. 

• To declare a pointer, use *. 

• Examples:

– These pointers will store addresses. 

– These pointers will store addresses of int/double variables. 

• We may point to any type. 

• To point to different types, use different types of pointers. 

type pointed* pointer name; type pointed *pointer name;

int *ptrInt; double* ptrDou;
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Sizes of pointers

• All pointers have the same size. 

– In a 32-bit computer, a pointer is allocated 4 bytes.

– In a 64-bit computer, a pointer is allocated 8 bytes.

• The length of pointers decides the maximum size of the memory space. 

– 32 bits: 232 bytes = 4GB. 

– 64 bits: 264 bytes = ?

int* p1 = 0;

cout << sizeof(p1) << "\n"; // 8

double* p2 = 0;

cout << sizeof(p2) << "\n"; // 8
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Pointer assignment

• We use the address-of operator & to obtain a variable’s address:

• The address-of operator & returns the (beginning) address of a variable. 

• Example:

– ptr points to a, i.e., ptr

stores the address of a. 

• When assigning an address, the two types must match. 

pointer name = &variable name

int a = 5;

int* ptr = &a;

int a = 5;

double* ptr = &a; // error! 
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• int a = 5;

• double b = 10.5;

• int* aPtr = &a;

• double* bPtr = &b;

• cout << &a; // 0x20c644

• cout << &b; // 0x20c660

• cout << &aPtr; // 0x20c658

• cout << &bPtr; // 0x20c64c

Variables in memory

Address Identifier Value

Memory

0x20c64c
bPtr 0x20c660

0x20c650

0x20c658
aPtr 0x20c644

0x20c65c

0x20c660
b 10.5

0x20c664

0x20c644 a 5
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Address operators

• There are two address operators.

– &: The address-of operator. It returns a variable’s address.

– *: The dereference operator. It returns the pointed variable.

• For int a = 5:

– a equals 5.

– &a returns an address (e.g., 0x22ff78).

• For int* ptrA = &a:

– ptrA stores an address (e.g., 0x22ff78).

– &ptrA returns the pointer’s address (e.g., 0x21aa74). This has nothing to do 

with the pointed variable a.  

– *ptrA returns a, the variable pointed by the pointer. 
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Address operators

• Example:

int a = 10;

int* p1 = &a;

cout << "value of a = " << a << "\n";

cout << "value of p1 = " << p1 << "\n";

cout << "address of a = " << &a << "\n";

cout << "address of p1 = " << &p1 << "\n";

cout << "value of the variable pointed by p1 = " << *p1 << "\n";
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Address operators

• & returns a variable’s address.

– We cannot use &100, &(a++) (because a++ returns the value of a).

– We can only perform & on a variable.

– We cannot assign a value to &x (&x is a value!).

– We can get a usual variable’s or a pointer variable’s address.

• * returns the pointed variable. 

– We can perform * on a pointer variable. 

– We cannot perform * on a usual variable.

– We cannot change a variable’s address. No operation can do this.
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Address operators

• What is *&x if x is a variable? 

– &x is the address of x. 

– *(&x) is the variable stored in that address. 

– So *(&x) is x. 

• What is &*x if x is a pointer? 

– If x is a pointer, *x is the variable stored at x (x stores an address!). 

– &*x is the address of *x, which is exactly x. 

• & and * cancel each other.

• What is &*x if x is not a pointer?
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Address operators: examples

int a = 10;

int* ptr = &a;

cout << *ptr; // ?

*ptr = 5; 

cout << a;    // ?

a = 18; 

cout << *ptr; // ?

int a = 10;

int* ptr1; 

int* ptr2;

ptr1 = ptr2 = &a;

cout << *ptr1; // ?

*ptr2 = 5;     

cout << *ptr1; // ?

(*ptr1)++; 

cout << a;     // ?

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic



Ling-Chieh Kung (NTU IM)Programming Design – Pointers 12 / 55

Null pointers

• What will happen? 

• If we dereference a pointers of unknown value, the outcome is unpredictable. 

– The pointers points to somewhere... And we do not know where it is!

• A pointer pointing to nothing should be assigned nullptr, NULL, or 0. 

– Dereferencing a null pointer shutdowns the program (a run-time error). 

int* p2 = nullptr;

cout << "value of p2 = " << p2 << "\n";

cout << "address of p2 = " << &p2 << "\n";

cout << "the variable pointed by p2 = " << *p2 << "\n";

int* ptr;

cout << *ptr; // ?
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Null pointers

• As a bad example: 

#include <iostream>

using namespace std;

int main()

{

int* ptrArray[10000];

for(int i = 0; i < 10000; i++)

cout << i << " " << *ptrArray[i] << "\n";

return 0;

}
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Good programming style

• Initialize a pointer as nullptr, 0, or NULL if no initial value is available.

– nullptr is the current standard in C++, but they are all the same for 

representing a “null pointer”.

– By using nullptr (instead of 0), everyone knows the variable must be a 

pointer, and you are not talking about a number or character.

• In general, when you get a run time error or different outcomes for multiple 

executions, check your arrays and pointers. 

• When we use * in declaring a pointer, that * is not a dereference operator. 

– It is just a special syntax for declaring a pointer variable. 

• When we use & in declaring a reference, that & is not an address-of operator. 

– It is just a special syntax for declaring a reference variable. 
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Good programming style

• I prefer to view int* as a type, which 

represents an “integer pointer”. 

– I prefer “int* p” to “int *p”. 

• The other way is also common. It views 
*p as an integer.

– They prefer “int *p” to “int* p”. 

• Be consistent throughout your program. 

• Be careful: int* p, q;   // p is int*, q is int

int *p, *q;  // two pointers

int* p, *q;  // two pointers

int* p, * q; // two pointers
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References and pointers

• Recall this example: 

• When invoking a function and passing 

parameters, the default scheme is to “call 

by value” (or “pass by value”).

– The function declares its own local 

variables, using a copy of the arguments’ 

values as initial values. 

– Thus we swapped the two local 

variables declared in the callee, not the 

two in the caller that we want to swap.

• To solve this, we can use “call by reference” 

or “call by pointer.”

void swap(int x, int y);

int main()

{

int a = 10, b = 20;

cout << a << " " << b << "\n"; 

swap(a, b);

cout << a << " " << b << "\n"; 

}

void swap(int x, int y)

{

int temp = x;

x = y;

y = temp;

}
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References

• A reference is a variable’s alias. 

• The reference is another variable that refers to the variable.

• Thus, using the reference is the same as using the variable.

• int& d = c is to declare d as c’s reference.

– This & is different from the & operator which returns a variable’s address. 

• int& d = 10 is an error. 

– A literal cannot have an alias!

int c = 10;

int& d = c; // declare d as c’s reference

d = 20;

cout << c << "\n"; // 20
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Call by reference

• Now we know how to change a 

parameter’s value:

– Instead of declaring a usual local 

variable as a parameter, declare a 

reference variable. 

• This is to “call by reference”.  

void swap(int& x, int& y);

int main()

{

int a = 10, b = 20;

cout << a << " " << b << "\n";

cout << &a << "\n"; 

swap(a, b);

cout << a << " " << b << "\n"; 

}

void swap(int& x, int& y)

{

cout << &x << "\n"; 

int temp = x;

x = y;

y = temp;

}
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Call by reference

• Thus we can call by reference and modify our arguments’ values.

• When calling by reference, the only thing you 
have to do is to add an & in the parameter 

declaration in the function header.

• Mostly people use references only to 

call by reference. 

• View the & in declaration as a part of type. 

– I use int& a = b instead of int &a = b.

– Be consistent of your choice about int& a = b and int &a = b.

void swap(int& x, int& y);

int main()

{

int a = 10, b = 20;

swap(a, b);

}
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Call by pointers

• To call by pointers: 

– Declare a pointer variable as a parameter.

– Pass a pointer variable or an address (e.g., 
returned by &) at invocation.

• For the swap() example: 

• Invocation becomes swap(&a, &b);

void swap(int* ptrA, int* ptrB)

{

int temp = *ptrA;

*ptrA = *ptrB;

*ptrB = temp;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c660 a 10

0x20c664 b 20

0x20c644 ptrA 0x20c660

0x20c64c ptrB 0x20c664

0x20c658 temp 10

0x20c660 a 20

0x20c664 b 10

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic



Ling-Chieh Kung (NTU IM)Programming Design – Pointers 22 / 55

Call by pointers

• How about the following implementation? 

– Invocation: swap(&a, &b);

void swap(int* ptrA, int* ptrB)

{

int* temp = ptrA;

ptrA = ptrB;

ptrB = temp;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c660 a 10

0x20c664 b 20

0x20c644 ptrA 0x20c660

0x20c64c ptrB 0x20c664

0x20c658 temp 0x20c660

0x20c644 ptrA 0x20c664

0x20c64c ptrB 0x20c660

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c
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Call by pointers

• The principle behind calling by reference and calling by pointer is the same.

• You can view calling by reference as a special tool made by using pointers.

• Do not mix references and pointers! 

– E.g., we cannot pass a pointer variable or an address to a reference!

• You can call by reference in most situations, and it is clearer and more 

convenient than to call by pointer.

– When you just want to modify arguments or return several values, call by 

reference.

– When you really have to do something by pointers, call by pointer.
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Returning a pointer

• May a function return a pointer? Yes! 

– We simply returns an address. 

• Why returning an address? 

– p records the address of the first 

negative number in the array a.

– With the address, we also know the 

value of that negative number. 

– If we only have the value, we do not 

know its address (and index). 

• To obtain the index, we need pointer 

arithmetic. 

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i]; 

} // what if a[i] >= 0 for all i?

} 

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

cout << *p << " " << p << "\n";

return 0; 

}
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Static memory allocation

• We declare an array by specifying it’s length as a constant variable or a literal.

• Memory allocation to an array can be determined during the compilation time. 

– 400 bytes will be allocated for the above statements. 

• This is called “static memory allocation”. 

• We may decide the length of an array “dynamically”. 

– That is, during the run time. 

• To do so, we must use a different syntax. 

– All types of variables may also be declared in this way. 

const int ARRAY_LEN = 100;

int a[ARRAY_LEN];
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Dynamic memory allocation

• The operator new allocates a memory space and returns the address. 

– In C, we use a different keyword melloc. 

• new int allocates 4 bytes, and the returned address is not recorded. 

• int* a = new intmakes a store the address of the 4-byte space.

• int* a = new int(5)makes the space contain 5 as the value.

• int* a = new int[5] allocates 20 bytes (for 5 integers). 

– a points to the first integer. 

– a can be viewed as an array. It is a dynamic array. 

• Dynamically allocated arrays cannot be initialized with a single statement. 

– A loop, for example, is needed. 
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Dynamic memory allocation

• Memory allocation (the size and location of the space) is determined during the 

run time. 

• So we may write

• This allocates space according to the input from users. 

int len = 0;

cin >> len;

int* a = new int[len];
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Dynamic memory allocation

• Space allocated during the run time has no name!

– On the other hand, every space allocated during 

the compilation time has a name. 

• To access a dynamically-allocated space, we use a 

pointer to store its address. 

int len = 0;

cin >> len; // 3

int* a = new int[len];

for(int i = 0; i < len; i++)

a[i] = i + 1;

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c658 len0x20c658 len 3

0x20c660
a 0x20c644

0x20c664

0x20c644

N/A0x20c648

0x20c64c

0x20c644

N/A

1

0x20c648 2

0x20c64c 3
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Example: Fibonacci sequence

• Recall the repetitive implementation

of generating the Fibonacci sequence. 

• After we get the value of sequence

length n, we dynamically declare an

array of length n. 

• Then just use that array! 

double fibRepetitive(int n)

{

if(n == 1)

return 1;

else if(n == 2)

return 1;

double* fib = new double[n];

fib[0] = 1;

fib[1] = 1;

for(int i = 2; i < n; i++)

fib[i] = fib[i - 1] + fib[i - 2];

double result = fib[n - 1];

delete[] fib; // to be explained

return result;

}
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Memory leak

• For space allocated during the compilation time, 

the system will release this space automatically 

when the corresponding variables no longer exist. 

void func(int a)

{

double b;

} // 4 + 8 bytes are released

int main()

{

func(10);

return 0;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c64c a 10

0x20c658 b ?
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Memory leak

• For space allocated during the run time, the system 

will not release this space unless it is asked to do so. 

– Because the space has no name!

void func()

{

int* bPtr = new int[3];

}

// 8 bytes for bPtr are released 

// 12 bytes for integers are not

int main()

{

func( );

return 0;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c65c bPtr 0x20c648

0x20c648 N/A ?

0x20c64c N/A ?

0x20c650 N/A ?

0x20c65c

0x20c660
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Memory leak

• Programmers must keep a record for all space 

allocated dynamically.

• This problem is called memory leak. 

– We lose the control of allocated space. 

– These space are wasted. 

– They will not be released unit the program ends. 

double* b = new double;

*b = 5.2;

double c = 10.6;

b = &c; // now no one can access 

// the space containing 5.2

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c648 b

0x20c654 N/A ?

0x20c648 b 0x20c654

0x20c654 N/A 5.2

0x20c660 c 10.6

0x20c648 b 0x20c660
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Memory leak

• Try this carefully!

– The outcome may be different

on your computer.  

#include <iostream>

using namespace std;

int main()

{

for(int i = 0; ; i++)

{

int* ptr = new int[100000];

cout << i << "\n";

// delete [] ptr;

}

return 0;

}
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Releasing space manually

• The delete operator will 

release a dynamically-

allocated space.

• The delete operator will 

do nothing to the pointer. 

To avoid reusing the 

released space, set the 
pointer to nullptr. 

int* a = new int;

delete a; // release 4 bytes

int* b = new int[5]; 

delete b; // release only 4 bytes! 

// Unpredictable results may happen

delete [] b; // release all 20 bytes

int* a = new int;

delete a;  // a is still pointing to the address

a = nullptr; // now a points to nothing

int* b = new int[5]; 

delete [] b; // b is still pointing to the address

b = nullptr; // now b points to nothing
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Good programming style

• Use DMA for arrays with no predetermined length.

– Even though Dev-C++ (and some other compilers) converts

to

• To avoid memory leak: 

– Whenever you write a new statement, add a delete statement below 

immediately (unless you know you really do not need it). 

– Whenever you want to change the value of a pointer, check whether 

memory leak occurs. 

– Whenever you write a delete statement, set the pointer to nullptr. 

int a = 10;

int b[a];

int a = 10;

int* b = new int[a];

// ...

delete [] b;
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Two-dimensional dynamic arrays

• With static arrays, we may create matrices as two-dimensional arrays. 

• An m by n two-dimensional array has: 

– m rows (single-dimensional arrays). 

– Each row has n elements. 

• With dynamic arrays, we now may create matrices with different row lengths. 

– We may still have m rows. 

– Now each row may have different number of elements. 

– E.g., a lower triangular matrix. 
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Example: lower triangular arrays

• int* array = new int[10] declares an 

array of integers. 

• int** array = new int*[10] declares an 

array of integer pointers!

– The type of array[0] is int*. 

– The type of array[1] is int*. 

• Then each of these integer pointers may store 

the address of a dynamic integer array. 

– And their lengths can be different.

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r); // later

// some delete statements

return 0;

}
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Example: lower triangular arrays

• Let’s visualize the 

memory events. 

• In general, the 

space of the three 

1-dim dynamic 

arrays may be 

separated. 

• However, the 

space of the array 

elements in each 

array are 

contiguous. 

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r); // later

// some delete statements

return 0;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

0x20c668

0x20c66c

0x20c670

0x20c674

0x20c678

0x20c67c

0x20c680

Memory

0x20c644 r 3

0x20c648 Array 0x20c654

0x20c654 N/A ?

0x20c65c N/A ?

0x20c664 N/A ?

0x20c654 N/A 0x20c66c

0x20c66c N/A ?0x20c66c N/A 1

0x20c670 N/A ?

0x20c674 N/A ?

0x20c65c N/A 0x20c670

0x20c670 N/A 1

0x20c674 N/A 2

0x20c664 N/A 0x20c678

0x20c678 N/A ?

0x20c67c N/A ?

0x20c680 N/A ?

0x20c678 N/A 1

0x20c67c N/A 2

0x20c680 N/A 3
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Example: lower triangular arrays

• To pass a two-dimensional dynamic array, just pass that pointer. 

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r);

// some delete statements

return 0;

}

int print(int** arr, int r)

{

for(int i = 0; i < r; i++)

{

for(int j = 0; j <= i; j++)

cout << arr[i][j] << " ";

cout << "\n";

}

}
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Example: lower triangular arrays

• An alternative: 

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r);

// some delete statements

return 0;

}

int print1D(int* arr, int n)

{

for(int i = 0; i < n; i++)

cout << arr[j] << " ";

cout << "\n";

}

int print(int** arr, int r)

{

for(int i = 0; i < r; i++)

{

print1D(arr[i], i + 1);

}

}
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Outline

• The basics of pointers

• Using pointers in functions

• Dynamic memory allocation (DMA)

• Arrays and pointer arithmetic 
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Pointers and arrays

• An array variable stores an address, just like a pointer! 

– It records the address of the first element of the array. 

– When passing an array, we pass an address.

– The array indexing operator [] indicates offsetting.  

• To further understand this issue, let’s study pointer arithmetic. 

– Using +, –, ++, and –– on pointers. 
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Pointer arithmetic: ++ and --

• ++: Increment the pointer variable’s value by the number of bytes occupied by a 

variable in this type (i.e., point to the next variable). 

– E.g., for integer pointers, the value (an address) increases by 4 (bytes).

• --: Decrement the pointer variable’s value by the number of bytes a variable in 

this type occupies (i.e., point to the previous variable).

int a = 10;

int* ptr = &a;

cout << ptr++;  

// just an address

// we don't know what's here

cout << *ptr; 

// dangerous! 
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Pointer arithmetic

• Usually, one arbitrary address returned by performing arithmetic on a pointer 

variable is useless.

• The arithmetic is useful (and should be used) only when you can predict a 

variable’s address. 

– In particular, when variables are stored consecutively. 

double a[3] = {10.5, 11.5, 12.5};

double* b = &a[0];

cout << *b << " " << b << "\n";  // 10.5

b = b + 2; // b++ and then b++

cout << *b << " " << b << "\n";  // 12.5

b--;

cout << *b << " " << b << "\n";  // 11.5

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic



Ling-Chieh Kung (NTU IM)Programming Design – Pointers 46 / 55

Pointer arithmetic: -

• We cannot add two address.

• However, we can find the difference of two addresses.

double a[3] = {10.5, 11.5, 12.5};

double* b = &a[0];

double* c = &a[2];

cout << c - b << "\n"; // 2, not 16!
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Pointers and arrays

• Changing the value stored in a pointer is dangerous: 

int y[3] = {1, 2, 3};

int* x = y;

for(int i = 0; i < 3; i++)

cout << *(x + i) << " "; // 1 2 3

for(int i = 0; i < 3; i++)

cout << *(x++) << " "; // 1 2 3

for(int i = 0; i < 3; i++)

cout << *(x + i) << " "; // unpredictable
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Indexing and pointer arithmetic

• The array indexing operator [] is just an interface for doing pointer arithmetic. 

– Interface: a (typically safer and easier) way of completing a task. 

– x[i] and *(x + i) are identical, but using the former is safer and easier. 

• The address stored in an array variable (e.g., x) cannot be modified.

int x[3] = {1, 2, 3};

for(int i = 0; i < 3; i++)

cout << x[i] << " "; // x[i] == *(x + i) 

for(int i = 0; i < 3; i++)

cout << *(x + i) << " "; // 1 2 3

int x[3] = {1, 2, 3};

for(int i = 0; i < 3; i++)

cout << *(x++) << " "; // error!
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Example 1: incrementing array elements

• What does the following program do? #include <iostream>

using namespace std;

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = a; 

for(int i = 0; i < 5; i++) {

*p += 3;

p++;

}

for(int i = 0; i < 5; i++)

cout << a[i] << " ";

return 0;

}
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Example 2: insertion sort

• Consider the insertion sort taught last time. 

– Given a unsorted array A of length n, we first sort A[0:(n – 2)], and then 

insert A[n – 1] to the sorted part. 

– To complete this task, we do this recursively. 

• What if we want to first sort A[1:(n – 1)], and then insert A[0]? 

• We will need to implement a function:

– Given array, each time when we (recursively) invoke it, we pass a shorter

array formed by elements from array[1] to array[n - 1], the second

element to the last element. 

void insertionSort(int array[], const int n);
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Example 2: insertion sort

void insertionSort(int array[], const int n) {

if(n > 1) {

insertionSort(array + 1, n - 1);

int num1 = array[0];

int i = 1;

for(; i < n; i++) {

if(array[i] < num1)

array[i - 1] = array[i];

else

break;

}

array[i - 1] = num1;

}

}
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Example 3: returning a pointer

• Recall that we want to find the first 

negative number in an array. 

– We want its value and index. 

– We return its address. 

• Three issues remain. 

– Why not return its index?

– What if all elements in a are 

nonnegative? 

– Why not const int a[]?

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i]; 

} // what if a[i] >= 0 for all i?

} 

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

cout << *p << " " << p - a << "\n";

return 0; // what is p - a?

}
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Example 3: returning a pointer

• To take the possibility of having no negative number into consideration:  

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

if(p != nullptr)

cout << *p << " " << p - a << "\n";

return 0; 

}

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i]; 

} 

return nullptr;

}
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Example 3: returning a pointer

• Why not const int a[]?

– We return the address of a[i], which allows the caller to alter the element.

– const int* and int* are different! 

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

if(p != nullptr)

*p = -1 * *p; // *p at the LHS of =

return 0; 

}

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i]; 

} 

return nullptr;

}
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Example 3: returning a pointer

• To use const int a[], we need to change the return type. 

– We should also return const int*.

– This is an int* that cannot be put at the LHS of an assignment operator. 

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

const int* p = firstNeg(a, 5);

if(p != nullptr)

cout << *p << "\n"; // OK

return 0; 

}

#include <iostream>

using namespace std;

const int* firstNeg

(const int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i]; 

} 

return nullptr;

}
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Remarks

• When should we use pointers? 

– Call by reference/pointer. 

– Dynamic memory allocation and dynamic arrays. 

– Dynamic data structures (to be introduced later in this semester). 

– C strings (to be introduced later in this semester).

• If not needed, avoid using pointers. 

– In the past, using pointers may enhance the run-time efficiency (at the 

implementation level). 

– Modern compilers are good at implementation-level efficiency optimization. 

– Readability is more important. 
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