
Ling-Chieh Kung (NTU IM)Programming Design – Pointers 1 / 55

Programming Design

Pointers

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 2 / 55

Outline

• Basics of pointers

• Using pointers in functions

• Dynamic memory allocation (DMA)

• Arrays and pointer arithmetic

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 3 / 55

Pointers

• A pointer is a variable which stores a memory address.

– An array variable also stores a memory address.

• To declare a pointer, use *.

• Examples:

– These pointers will store addresses.

– These pointers will store addresses of int/double variables.

• We may point to any type.

• To point to different types, use different types of pointers.

type pointed* pointer name; type pointed *pointer name;

int *ptrInt; double* ptrDou;

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 4 / 55

Sizes of pointers

• All pointers have the same size.

– In a 32-bit computer, a pointer is allocated 4 bytes.

– In a 64-bit computer, a pointer is allocated 8 bytes.

• The length of pointers decides the maximum size of the memory space.

– 32 bits: 232 bytes = 4GB.

– 64 bits: 264 bytes = ?

int* p1 = 0;

cout << sizeof(p1) << "\n"; // 8

double* p2 = 0;

cout << sizeof(p2) << "\n"; // 8

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 5 / 55

Pointer assignment

• We use the address-of operator & to obtain a variable’s address:

• The address-of operator & returns the (beginning) address of a variable.

• Example:

– ptr points to a, i.e., ptr

stores the address of a.

• When assigning an address, the two types must match.

pointer name = &variable name

int a = 5;

int* ptr = &a;

int a = 5;

double* ptr = &a; // error!

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 6 / 55

• int a = 5;

• double b = 10.5;

• int* aPtr = &a;

• double* bPtr = &b;

• cout << &a; // 0x20c644

• cout << &b; // 0x20c660

• cout << &aPtr; // 0x20c658

• cout << &bPtr; // 0x20c64c

Variables in memory

Address Identifier Value

Memory

0x20c64c
bPtr 0x20c660

0x20c650

0x20c658
aPtr 0x20c644

0x20c65c

0x20c660
b 10.5

0x20c664

0x20c644 a 5

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 7 / 55

Address operators

• There are two address operators.

– &: The address-of operator. It returns a variable’s address.

– *: The dereference operator. It returns the pointed variable.

• For int a = 5:

– a equals 5.

– &a returns an address (e.g., 0x22ff78).

• For int* ptrA = &a:

– ptrA stores an address (e.g., 0x22ff78).

– &ptrA returns the pointer’s address (e.g., 0x21aa74). This has nothing to do

with the pointed variable a.

– *ptrA returns a, the variable pointed by the pointer.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 8 / 55

Address operators

• Example:

int a = 10;

int* p1 = &a;

cout << "value of a = " << a << "\n";

cout << "value of p1 = " << p1 << "\n";

cout << "address of a = " << &a << "\n";

cout << "address of p1 = " << &p1 << "\n";

cout << "value of the variable pointed by p1 = " << *p1 << "\n";

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 9 / 55

Address operators

• & returns a variable’s address.

– We cannot use &100, &(a++) (because a++ returns the value of a).

– We can only perform & on a variable.

– We cannot assign a value to &x (&x is a value!).

– We can get a usual variable’s or a pointer variable’s address.

• * returns the pointed variable.

– We can perform * on a pointer variable.

– We cannot perform * on a usual variable.

– We cannot change a variable’s address. No operation can do this.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 10 / 55

Address operators

• What is *&x if x is a variable?

– &x is the address of x.

– *(&x) is the variable stored in that address.

– So *(&x) is x.

• What is &*x if x is a pointer?

– If x is a pointer, *x is the variable stored at x (x stores an address!).

– &*x is the address of *x, which is exactly x.

• & and * cancel each other.

• What is &*x if x is not a pointer?

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 11 / 55

Address operators: examples

int a = 10;

int* ptr = &a;

cout << *ptr; // ?

*ptr = 5;

cout << a; // ?

a = 18;

cout << *ptr; // ?

int a = 10;

int* ptr1;

int* ptr2;

ptr1 = ptr2 = &a;

cout << *ptr1; // ?

*ptr2 = 5;

cout << *ptr1; // ?

(*ptr1)++;

cout << a; // ?

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 12 / 55

Null pointers

• What will happen?

• If we dereference a pointers of unknown value, the outcome is unpredictable.

– The pointers points to somewhere... And we do not know where it is!

• A pointer pointing to nothing should be assigned nullptr, NULL, or 0.

– Dereferencing a null pointer shutdowns the program (a run-time error).

int* p2 = nullptr;

cout << "value of p2 = " << p2 << "\n";

cout << "address of p2 = " << &p2 << "\n";

cout << "the variable pointed by p2 = " << *p2 << "\n";

int* ptr;

cout << *ptr; // ?

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 13 / 55

Null pointers

• As a bad example:

#include <iostream>

using namespace std;

int main()

{

int* ptrArray[10000];

for(int i = 0; i < 10000; i++)

cout << i << " " << *ptrArray[i] << "\n";

return 0;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 14 / 55

Good programming style

• Initialize a pointer as nullptr, 0, or NULL if no initial value is available.

– nullptr is the current standard in C++, but they are all the same for

representing a “null pointer”.

– By using nullptr (instead of 0), everyone knows the variable must be a

pointer, and you are not talking about a number or character.

• In general, when you get a run time error or different outcomes for multiple

executions, check your arrays and pointers.

• When we use * in declaring a pointer, that * is not a dereference operator.

– It is just a special syntax for declaring a pointer variable.

• When we use & in declaring a reference, that & is not an address-of operator.

– It is just a special syntax for declaring a reference variable.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 15 / 55

Good programming style

• I prefer to view int* as a type, which

represents an “integer pointer”.

– I prefer “int* p” to “int *p”.

• The other way is also common. It views
*p as an integer.

– They prefer “int *p” to “int* p”.

• Be consistent throughout your program.

• Be careful: int* p, q; // p is int*, q is int

int *p, *q; // two pointers

int* p, *q; // two pointers

int* p, * q; // two pointers

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

int b = 5;

int *ptr1 = &b; // int, int, addr

*ptrB = 12;

cout << b << "\n";

int* ptr2 = &b; // addr, addr, addr

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 16 / 55

Outline

• The basics of pointers

• Using pointers in functions

– Call by reference

– Call by pointer

– Returning a pointer

• Dynamic memory allocation (DMA)

• Arrays and pointer arithmetic

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 17 / 55

References and pointers

• Recall this example:

• When invoking a function and passing

parameters, the default scheme is to “call

by value” (or “pass by value”).

– The function declares its own local

variables, using a copy of the arguments’

values as initial values.

– Thus we swapped the two local

variables declared in the callee, not the

two in the caller that we want to swap.

• To solve this, we can use “call by reference”

or “call by pointer.”

void swap(int x, int y);

int main()

{

int a = 10, b = 20;

cout << a << " " << b << "\n";

swap(a, b);

cout << a << " " << b << "\n";

}

void swap(int x, int y)

{

int temp = x;

x = y;

y = temp;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 18 / 55

References

• A reference is a variable’s alias.

• The reference is another variable that refers to the variable.

• Thus, using the reference is the same as using the variable.

• int& d = c is to declare d as c’s reference.

– This & is different from the & operator which returns a variable’s address.

• int& d = 10 is an error.

– A literal cannot have an alias!

int c = 10;

int& d = c; // declare d as c’s reference

d = 20;

cout << c << "\n"; // 20

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 19 / 55

Call by reference

• Now we know how to change a

parameter’s value:

– Instead of declaring a usual local

variable as a parameter, declare a

reference variable.

• This is to “call by reference”.

void swap(int& x, int& y);

int main()

{

int a = 10, b = 20;

cout << a << " " << b << "\n";

cout << &a << "\n";

swap(a, b);

cout << a << " " << b << "\n";

}

void swap(int& x, int& y)

{

cout << &x << "\n";

int temp = x;

x = y;

y = temp;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 20 / 55

Call by reference

• Thus we can call by reference and modify our arguments’ values.

• When calling by reference, the only thing you
have to do is to add an & in the parameter

declaration in the function header.

• Mostly people use references only to

call by reference.

• View the & in declaration as a part of type.

– I use int& a = b instead of int &a = b.

– Be consistent of your choice about int& a = b and int &a = b.

void swap(int& x, int& y);

int main()

{

int a = 10, b = 20;

swap(a, b);

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 21 / 55

Call by pointers

• To call by pointers:

– Declare a pointer variable as a parameter.

– Pass a pointer variable or an address (e.g.,
returned by &) at invocation.

• For the swap() example:

• Invocation becomes swap(&a, &b);

void swap(int* ptrA, int* ptrB)

{

int temp = *ptrA;

*ptrA = *ptrB;

*ptrB = temp;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c660 a 10

0x20c664 b 20

0x20c644 ptrA 0x20c660

0x20c64c ptrB 0x20c664

0x20c658 temp 10

0x20c660 a 20

0x20c664 b 10

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 22 / 55

Call by pointers

• How about the following implementation?

– Invocation: swap(&a, &b);

void swap(int* ptrA, int* ptrB)

{

int* temp = ptrA;

ptrA = ptrB;

ptrB = temp;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c660 a 10

0x20c664 b 20

0x20c644 ptrA 0x20c660

0x20c64c ptrB 0x20c664

0x20c658 temp 0x20c660

0x20c644 ptrA 0x20c664

0x20c64c ptrB 0x20c660

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 23 / 55

Call by pointers

• The principle behind calling by reference and calling by pointer is the same.

• You can view calling by reference as a special tool made by using pointers.

• Do not mix references and pointers!

– E.g., we cannot pass a pointer variable or an address to a reference!

• You can call by reference in most situations, and it is clearer and more

convenient than to call by pointer.

– When you just want to modify arguments or return several values, call by

reference.

– When you really have to do something by pointers, call by pointer.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 24 / 55

Returning a pointer

• May a function return a pointer? Yes!

– We simply returns an address.

• Why returning an address?

– p records the address of the first

negative number in the array a.

– With the address, we also know the

value of that negative number.

– If we only have the value, we do not

know its address (and index).

• To obtain the index, we need pointer

arithmetic.

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i];

} // what if a[i] >= 0 for all i?

}

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

cout << *p << " " << p << "\n";

return 0;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 25 / 55

Outline

• The basics of pointers

• Using pointers in functions

• Dynamic memory allocation (DMA)

• Arrays and pointer arithmetic

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 26 / 55

Static memory allocation

• We declare an array by specifying it’s length as a constant variable or a literal.

• Memory allocation to an array can be determined during the compilation time.

– 400 bytes will be allocated for the above statements.

• This is called “static memory allocation”.

• We may decide the length of an array “dynamically”.

– That is, during the run time.

• To do so, we must use a different syntax.

– All types of variables may also be declared in this way.

const int ARRAY_LEN = 100;

int a[ARRAY_LEN];

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 27 / 55

Dynamic memory allocation

• The operator new allocates a memory space and returns the address.

– In C, we use a different keyword melloc.

• new int allocates 4 bytes, and the returned address is not recorded.

• int* a = new intmakes a store the address of the 4-byte space.

• int* a = new int(5)makes the space contain 5 as the value.

• int* a = new int[5] allocates 20 bytes (for 5 integers).

– a points to the first integer.

– a can be viewed as an array. It is a dynamic array.

• Dynamically allocated arrays cannot be initialized with a single statement.

– A loop, for example, is needed.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 28 / 55

Dynamic memory allocation

• Memory allocation (the size and location of the space) is determined during the

run time.

• So we may write

• This allocates space according to the input from users.

int len = 0;

cin >> len;

int* a = new int[len];

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 29 / 55

Dynamic memory allocation

• Space allocated during the run time has no name!

– On the other hand, every space allocated during

the compilation time has a name.

• To access a dynamically-allocated space, we use a

pointer to store its address.

int len = 0;

cin >> len; // 3

int* a = new int[len];

for(int i = 0; i < len; i++)

a[i] = i + 1;

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c658 len0x20c658 len 3

0x20c660
a 0x20c644

0x20c664

0x20c644

N/A0x20c648

0x20c64c

0x20c644

N/A

1

0x20c648 2

0x20c64c 3

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 30 / 55

Example: Fibonacci sequence

• Recall the repetitive implementation

of generating the Fibonacci sequence.

• After we get the value of sequence

length n, we dynamically declare an

array of length n.

• Then just use that array!

double fibRepetitive(int n)

{

if(n == 1)

return 1;

else if(n == 2)

return 1;

double* fib = new double[n];

fib[0] = 1;

fib[1] = 1;

for(int i = 2; i < n; i++)

fib[i] = fib[i - 1] + fib[i - 2];

double result = fib[n - 1];

delete[] fib; // to be explained

return result;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 31 / 55

Memory leak

• For space allocated during the compilation time,

the system will release this space automatically

when the corresponding variables no longer exist.

void func(int a)

{

double b;

} // 4 + 8 bytes are released

int main()

{

func(10);

return 0;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c64c a 10

0x20c658 b ?

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 32 / 55

Memory leak

• For space allocated during the run time, the system

will not release this space unless it is asked to do so.

– Because the space has no name!

void func()

{

int* bPtr = new int[3];

}

// 8 bytes for bPtr are released

// 12 bytes for integers are not

int main()

{

func();

return 0;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c65c bPtr 0x20c648

0x20c648 N/A ?

0x20c64c N/A ?

0x20c650 N/A ?

0x20c65c

0x20c660

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 33 / 55

Memory leak

• Programmers must keep a record for all space

allocated dynamically.

• This problem is called memory leak.

– We lose the control of allocated space.

– These space are wasted.

– They will not be released unit the program ends.

double* b = new double;

*b = 5.2;

double c = 10.6;

b = &c; // now no one can access

// the space containing 5.2

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

Memory

0x20c648 b

0x20c654 N/A ?

0x20c648 b 0x20c654

0x20c654 N/A 5.2

0x20c660 c 10.6

0x20c648 b 0x20c660

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 34 / 55

Memory leak

• Try this carefully!

– The outcome may be different

on your computer.

#include <iostream>

using namespace std;

int main()

{

for(int i = 0; ; i++)

{

int* ptr = new int[100000];

cout << i << "\n";

// delete [] ptr;

}

return 0;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 35 / 55

Releasing space manually

• The delete operator will

release a dynamically-

allocated space.

• The delete operator will

do nothing to the pointer.

To avoid reusing the

released space, set the
pointer to nullptr.

int* a = new int;

delete a; // release 4 bytes

int* b = new int[5];

delete b; // release only 4 bytes!

// Unpredictable results may happen

delete [] b; // release all 20 bytes

int* a = new int;

delete a; // a is still pointing to the address

a = nullptr; // now a points to nothing

int* b = new int[5];

delete [] b; // b is still pointing to the address

b = nullptr; // now b points to nothing

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 36 / 55

Good programming style

• Use DMA for arrays with no predetermined length.

– Even though Dev-C++ (and some other compilers) converts

to

• To avoid memory leak:

– Whenever you write a new statement, add a delete statement below

immediately (unless you know you really do not need it).

– Whenever you want to change the value of a pointer, check whether

memory leak occurs.

– Whenever you write a delete statement, set the pointer to nullptr.

int a = 10;

int b[a];

int a = 10;

int* b = new int[a];

// ...

delete [] b;

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 37 / 55

Two-dimensional dynamic arrays

• With static arrays, we may create matrices as two-dimensional arrays.

• An m by n two-dimensional array has:

– m rows (single-dimensional arrays).

– Each row has n elements.

• With dynamic arrays, we now may create matrices with different row lengths.

– We may still have m rows.

– Now each row may have different number of elements.

– E.g., a lower triangular matrix.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 38 / 55

Example: lower triangular arrays

• int* array = new int[10] declares an

array of integers.

• int** array = new int*[10] declares an

array of integer pointers!

– The type of array[0] is int*.

– The type of array[1] is int*.

• Then each of these integer pointers may store

the address of a dynamic integer array.

– And their lengths can be different.

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r); // later

// some delete statements

return 0;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 39 / 55

Example: lower triangular arrays

• Let’s visualize the

memory events.

• In general, the

space of the three

1-dim dynamic

arrays may be

separated.

• However, the

space of the array

elements in each

array are

contiguous.

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r); // later

// some delete statements

return 0;

}

Address Identifier Value

0x20c644

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

0x20c65c

0x20c660

0x20c664

0x20c668

0x20c66c

0x20c670

0x20c674

0x20c678

0x20c67c

0x20c680

Memory

0x20c644 r 3

0x20c648 Array 0x20c654

0x20c654 N/A ?

0x20c65c N/A ?

0x20c664 N/A ?

0x20c654 N/A 0x20c66c

0x20c66c N/A ?0x20c66c N/A 1

0x20c670 N/A ?

0x20c674 N/A ?

0x20c65c N/A 0x20c670

0x20c670 N/A 1

0x20c674 N/A 2

0x20c664 N/A 0x20c678

0x20c678 N/A ?

0x20c67c N/A ?

0x20c680 N/A ?

0x20c678 N/A 1

0x20c67c N/A 2

0x20c680 N/A 3

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 40 / 55

Example: lower triangular arrays

• To pass a two-dimensional dynamic array, just pass that pointer.

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r);

// some delete statements

return 0;

}

int print(int** arr, int r)

{

for(int i = 0; i < r; i++)

{

for(int j = 0; j <= i; j++)

cout << arr[i][j] << " ";

cout << "\n";

}

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 41 / 55

Example: lower triangular arrays

• An alternative:

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++)

{

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r);

// some delete statements

return 0;

}

int print1D(int* arr, int n)

{

for(int i = 0; i < n; i++)

cout << arr[j] << " ";

cout << "\n";

}

int print(int** arr, int r)

{

for(int i = 0; i < r; i++)

{

print1D(arr[i], i + 1);

}

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 42 / 55

Outline

• The basics of pointers

• Using pointers in functions

• Dynamic memory allocation (DMA)

• Arrays and pointer arithmetic

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 43 / 55

Pointers and arrays

• An array variable stores an address, just like a pointer!

– It records the address of the first element of the array.

– When passing an array, we pass an address.

– The array indexing operator [] indicates offsetting.

• To further understand this issue, let’s study pointer arithmetic.

– Using +, –, ++, and –– on pointers.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 44 / 55

Pointer arithmetic: ++ and --

• ++: Increment the pointer variable’s value by the number of bytes occupied by a

variable in this type (i.e., point to the next variable).

– E.g., for integer pointers, the value (an address) increases by 4 (bytes).

• --: Decrement the pointer variable’s value by the number of bytes a variable in

this type occupies (i.e., point to the previous variable).

int a = 10;

int* ptr = &a;

cout << ptr++;

// just an address

// we don't know what's here

cout << *ptr;

// dangerous!

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 45 / 55

Pointer arithmetic

• Usually, one arbitrary address returned by performing arithmetic on a pointer

variable is useless.

• The arithmetic is useful (and should be used) only when you can predict a

variable’s address.

– In particular, when variables are stored consecutively.

double a[3] = {10.5, 11.5, 12.5};

double* b = &a[0];

cout << *b << " " << b << "\n"; // 10.5

b = b + 2; // b++ and then b++

cout << *b << " " << b << "\n"; // 12.5

b--;

cout << *b << " " << b << "\n"; // 11.5

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 46 / 55

Pointer arithmetic: -

• We cannot add two address.

• However, we can find the difference of two addresses.

double a[3] = {10.5, 11.5, 12.5};

double* b = &a[0];

double* c = &a[2];

cout << c - b << "\n"; // 2, not 16!

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 47 / 55

Pointers and arrays

• Changing the value stored in a pointer is dangerous:

int y[3] = {1, 2, 3};

int* x = y;

for(int i = 0; i < 3; i++)

cout << *(x + i) << " "; // 1 2 3

for(int i = 0; i < 3; i++)

cout << *(x++) << " "; // 1 2 3

for(int i = 0; i < 3; i++)

cout << *(x + i) << " "; // unpredictable

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 48 / 55

Indexing and pointer arithmetic

• The array indexing operator [] is just an interface for doing pointer arithmetic.

– Interface: a (typically safer and easier) way of completing a task.

– x[i] and *(x + i) are identical, but using the former is safer and easier.

• The address stored in an array variable (e.g., x) cannot be modified.

int x[3] = {1, 2, 3};

for(int i = 0; i < 3; i++)

cout << x[i] << " "; // x[i] == *(x + i)

for(int i = 0; i < 3; i++)

cout << *(x + i) << " "; // 1 2 3

int x[3] = {1, 2, 3};

for(int i = 0; i < 3; i++)

cout << *(x++) << " "; // error!

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 49 / 55

Example 1: incrementing array elements

• What does the following program do? #include <iostream>

using namespace std;

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = a;

for(int i = 0; i < 5; i++) {

*p += 3;

p++;

}

for(int i = 0; i < 5; i++)

cout << a[i] << " ";

return 0;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 50 / 55

Example 2: insertion sort

• Consider the insertion sort taught last time.

– Given a unsorted array A of length n, we first sort A[0:(n – 2)], and then

insert A[n – 1] to the sorted part.

– To complete this task, we do this recursively.

• What if we want to first sort A[1:(n – 1)], and then insert A[0]?

• We will need to implement a function:

– Given array, each time when we (recursively) invoke it, we pass a shorter

array formed by elements from array[1] to array[n - 1], the second

element to the last element.

void insertionSort(int array[], const int n);

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 51 / 55

Example 2: insertion sort

void insertionSort(int array[], const int n) {

if(n > 1) {

insertionSort(array + 1, n - 1);

int num1 = array[0];

int i = 1;

for(; i < n; i++) {

if(array[i] < num1)

array[i - 1] = array[i];

else

break;

}

array[i - 1] = num1;

}

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 52 / 55

Example 3: returning a pointer

• Recall that we want to find the first

negative number in an array.

– We want its value and index.

– We return its address.

• Three issues remain.

– Why not return its index?

– What if all elements in a are

nonnegative?

– Why not const int a[]?

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i];

} // what if a[i] >= 0 for all i?

}

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

cout << *p << " " << p - a << "\n";

return 0; // what is p - a?

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 53 / 55

Example 3: returning a pointer

• To take the possibility of having no negative number into consideration:

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

if(p != nullptr)

cout << *p << " " << p - a << "\n";

return 0;

}

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i];

}

return nullptr;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 54 / 55

Example 3: returning a pointer

• Why not const int a[]?

– We return the address of a[i], which allows the caller to alter the element.

– const int* and int* are different!

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

int* p = firstNeg(a, 5);

if(p != nullptr)

*p = -1 * *p; // *p at the LHS of =

return 0;

}

#include <iostream>

using namespace std;

int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i];

}

return nullptr;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 55 / 55

Example 3: returning a pointer

• To use const int a[], we need to change the return type.

– We should also return const int*.

– This is an int* that cannot be put at the LHS of an assignment operator.

int main()

{

int a[5] = {0};

for(int i = 0; i < 5; i++)

cin >> a[i];

const int* p = firstNeg(a, 5);

if(p != nullptr)

cout << *p << "\n"; // OK

return 0;

}

#include <iostream>

using namespace std;

const int* firstNeg

(const int a[], const int n) {

for(int i = 0; i < n; i++) {

if(a[i] < 0)

return &a[i];

}

return nullptr;

}

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 56 / 55

Remarks

• When should we use pointers?

– Call by reference/pointer.

– Dynamic memory allocation and dynamic arrays.

– Dynamic data structures (to be introduced later in this semester).

– C strings (to be introduced later in this semester).

• If not needed, avoid using pointers.

– In the past, using pointers may enhance the run-time efficiency (at the

implementation level).

– Modern compilers are good at implementation-level efficiency optimization.

– Readability is more important.

Basics of pointers Using pointers in functions

Dynamic memory allocation (DMA) Arrays and pointer arithmetic

