
Ling-Chieh Kung (NTU IM)Programming Design – C strings 1 / 59

Programming Design

C Strings

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 2 / 59

Outline

• Characters

• C strings

• C string processing functions

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 3 / 59

char

• charmeans a character.

– Use one byte (–128 to 127) to store English letters, numbers, symbols, and

special characters (e.g, the newline character).

– Cannot store, e.g, Chinese characters.

• It is also an integer!

– These characters are encoded with the ASCII code in most PCs.

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 4 / 59

char

• Character literals should be

placed in between a pair of single

quotation marks.

int main()

{

char c = '0';

cout << static_cast<int>(c) << " ";

c = 'A';

cout << static_cast<int>(c) << " ";

c = '\n';

cout << static_cast<int>(c) << " ";

return 0;

}

• A char variable can also be assigned

and compared with integer values.

int main()

{

char c = 48;

cout << c << " ";

c += 10;

cout << c << " ";

if(c > 50)

cout << c << " ";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 5 / 59

Example 1: confirming an operation

• We may let a user enter a character to

confirm the execution of some

operations.

– If ‘Y’ or ‘y’, execute.

– Otherwise, do not execute.

int main()

{

int a = 0, b = 0;

char c = 0;

do

{

cout << "Enter two integers: ";

cin >> a >> b;

cout << "Add? ";

cin >> c;

} while(c != 'Y' && c != 'y');

cout << a + b << "\n";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 6 / 59

Example 2: detecting target characters

• Sometimes we want to activate

some actions upon receiving a set

of target characters.

– For example, we may want to

turn all capital letters into its

lowercase.

– 26 if-elseworks.

– Is there a better way?

• Knowing the ASCII code helps (a

lot):

#include <iostream>

using namespace std;

int main()

{

char c = 0;

while(cin >> c)

{

if(65 <= c && c <= 90)

cout << static_cast<char>(c + 32);

else

cout << c;

cout << "\n";

}

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 7 / 59

Example 2: detecting target characters

• Example 2 works, but is not very good.

– One needs to know the ASCII code to write or understand the program.

– What if the ASCII code is changed some day?

• The C++ standard library <cctype> contains some useful functions for

processing characters.

Function header Result

int islower(int c); Returning 0 if c is not lowercase; nonzero otherwise

int isupper(int c); Returning 0 if c is not uppercase; nonzero otherwise

int tolower(int c); Returning the ASCII code of the lowercase of c

int toupper(int c); Returning the ASCII code of the uppercase of c

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 8 / 59

Example 2: detecting target characters

• By using tolower(): #include <iostream>

#include <cctype>

using namespace std;

int main()

{

char c = 0;

while(cin >> c)

cout << static_cast<char>(tolower(c)) << "\n";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 9 / 59

Character processing functions

• There are many other useful functions.

• Question: Why not return bool? Why int?

Function header Return value

int isalpha(int c); 0 if c is not a letter; nonzero otherwise

int isdigit(int c); 0 if c is not a digit; nonzero otherwise

int isalnum(int c); 0 if c is neither a letter nor a digit; nonzero otherwise

int isprint(int c); 0 if c is not printable; nonzero otherwise

int isspace(int c); 0 if c is not a space; nonzero otherwise

int ispunct(int c); 0 if c is not a punctuation mark; nonzero otherwise

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 10 / 59

Example 3: ASCII code table

• Let’s print out the ASCII code table

for printable characters:

#include <iostream>

#include <iomanip>

#include <cctype>

using namespace std;

int main()

{

cout << " 0123456789\n";

for(int i = 30; i <= 126; i++)

{

if(i % 10 == 0)

cout << setw(2) << i / 10 << " ";

if(isprint(i))

cout << static_cast<char>(i);

else

cout << " ";

if(i % 10 == 9)

cout << "\n";

}

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 11 / 59

Outline

• Characters

• C strings

• C String processing functions

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 12 / 59

String literals

• In many applications, we need some ways to handle strings.

• E.g., in an address book application, if we do not have strings:

– We cannot store names.

– We cannot store phone numbers.

– We cannot store addresses.

• Strings can be implemented in two ways:

– C strings as character arrays.

– C++ strings as objects.

• Let’s introduce C strings today.

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 13 / 59

String

• We have already used a string with cout:

– "Hello world" is a string.

• A string literal is contained in a pair of double quotation marks.

• A C string (variable) is declared as a character array.

– char s[10];

• A character array can be initialized as a usual array.

– char s[10] = {0};

– char s[10] = {'a', 'b', 'c'};

cout << "Hello world";

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 14 / 59

Example: entering a string until #

• Consider the following program:

– Let a user enter a string ending
with a # symbol.

– Then print out the string
(excluding #).

• The character array is simply used as

a usual array.

#include <iostream>

using namespace std;

const int LEN = 10;

int main()

{

char s[LEN] = {0};

int n = 0;

do

{

cin >> s[n];

n++;

} while(s[n - 1] != '#' && n < LEN);

for(int i = 0; i < n - 1; i++)

cout << s[i];

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 15 / 59

A special way to input a string

• Because they are used for string, character arrays are special.

– Many operations are overloaded for character arrays in a special way.

– In particular, cin >> and cout <<.

• For an array A, if we do cin >> A:

– If A is of other types, this is not allowed.

– But for a character array, this allows us to input the string.

char str[10];

cin >> str; // if we type "abcde"

cout << str[0]; // a

cout << str[2]; // c

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 16 / 59

A special way to output a string

• For an array A, if we do cout << A:

– If A is of other types, this will print out it memory address.

– But for a character array, this prints out the whole string (some exceptions

will be discussed later).

• But wait… How does the cout << operation know when to stop?

– Why not printing out ten characters?

– Or does it print out ten characters but we do not see it?

int values[5] = {0};

cout << values; // an address

char str[10];

cin >> str; // if we type "abcde"

cout << str; // abcde

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 17 / 59

The null character

• When we use cin >> to input a string, a null character \0will be appended at

the end automatically.

– \0 is an escape sequence. It marks the end of a string.

– Its ASCII code is 0.

– It is \0, not \o or \O.

• When you declare a character array of length n, you can store a string of length

at most n – 1.

• A C string may be initialized with a double quotation.

– char s[100] = "abc";

– The assignment operator is overloaded for character arrays.

– A null character will also be appended if a C string is initialized in this way.

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 18 / 59

Understanding the null character

• From the system’s perspective, a null character marks the end of a string.

– In particular, << is implemented to print out characters up to \0.

• Recall that one may also initialize a C string by assigning multiple characters.

– char s[100] = {'a', 'b', 'c'};

– No null character will be appended (though uninitialized values will be

initialized to 0, which is the null character).

– = is overloaded for “a C string” and “some characters” in different ways.

char a[100] = "abcde FGH";

cout << a << "\n";// abcde FGH

char b[100] = "abcde\0 FGH";

cout << b << "\n"; // abcde

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 19 / 59

Comparisons

• We have two ways to initialize a C string:

• We have two ways to input a C string:

Example Will a null character be appended?

char s[10] = "abc"; Yes

char s[100] = {'a', 'b', 'c'}; No

Example Will a null character be appended?

cin >> s; Yes

cin >> s[0]; No

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 20 / 59

Example: entering a string until \n

• Consider the following program:

– Let a user enter a string ending with a \n symbol.

– Then print out the string (excluding \n).

• The character array is used with overloaded cin >>

and cout <<.

#include <iostream>

using namespace std;

const int LEN = 10;

int main()

{

char s[LEN] = {0};

cin >> s;

cout << s << "\n";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 21 / 59

String assignments

• Assignments with double quotations are allowed only for initialization.

– After all, s stores a memory address.

• One may assign values to a string by assigning values to individual characters.

char s[100];

s = "this is a string"; // compilation error!

s[0] = 'A';

s[1] = 'B';

s[2] = 'C';

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 22 / 59

String assignments

• How to explain the outputs of this program?

char c[100] = {0};

cin >> c; // "123456789"

cin >> c; // "abcde";

cout << c << "\n"; // "abcde"

c[5] = '*';

cout << c << "\n"; // "abcde*789"

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 23 / 59

Array boundary

• C++ does not check array boundary!

• We may or may not touch those memory spaces used by other

programs/variables.

– If a protected space is touched, an error occurs and our program is shutdown.

– If not, cout << prints out the whole string until the end of a string, which

is marked by a \0.

char a[5] = {0};

cin >> a; // "123456789"

cout << a; // "123456789" or an error

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 24 / 59

A strange case

• Is it because that a white space is treated as an end of C strings?

• No!

• Then why?

char a1[100] = {0};

cin >> a1; // "this is a string"

cout << a1; // "this"

char a2[100] = {'a', 'b', ' ', 'c', '\0', 'e'};

cout << a2; // ab c

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 25 / 59

cin >> vs. cin.getline()

• cin >> splits the input stream into

pieces according to white spaces.

– The same thing happens for the

newline character and tab.

• To input a string with white spaces, use
cin.getline().

– A instance function of the object
cin (to be introduced later in this

semester).

– It splits the input stream according

to newline characters only.

– A null character is appended.

char a[100];

cin.getline(a, 100); // Hi, it's me

cout << a << "\n"; // Hi, it's me

char a[100] = {0};

char b[100] = {0};

cin >> a >> b; // this is

cout << a << "\n"; // this

cout << b << "\n"; // is

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 26 / 59

Example: counting the number of spaces

• Several strings are contained in a text file.

– Each string is put in one line.

– Each string has at most 100 characters.

• For each input string, we want to count the

number of spaces in it (which is the number

of words minus one in some applications).

• Challenges:

– If consecutive spaces are considered as

only one space, how to count the number?

– What if cin.getline(a, 100) is

replaced by cin >> a?

char a[100] = {0};

while(cin.getline(a, 100))

{

int i = 0;

int spaceCount = 0;

while(a[i] != '\0')

{

if(a[i] == ' ')

spaceCount++;

i++;

}

cout << spaceCount << "\n";

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 27 / 59

String arrays

• A character array represents a string.

• A two-dimensional character array represents a set of strings.

– This may also be called a string array.

– Each one-dimensional array is a C string (with a \0 at the end).

char name[4][10] = {"John", "Mikasa", "Eren", "Armin"};

cout << name << "\n"; // an address

cout << name[1] << "\n";

cin >> name[2];

cout << name[2][0] << "\n";

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 28 / 59

C strings as character pointers

• Recall that a pointer may point to an array.

• Therefore, a character pointer may also represent a C string.

• More interestingly:

char s[100] = "12345";

char* p = s;

cout << p << "\n";

cin >> p; // or s

cout << s; // or p

char s[100] = "12345";

char* p = s;

cout << p + 2 << "\n";

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 29 / 59

A pointer is not an array

• Still, a pointer is not an array.

– In particular, no space has been allocated to

store values.

• When we use a character pointer as a C string:

– We may write values into an array through

the pointer.

– We cannot write values if there is no space

allocated.

• Just like usual arrays and pointers:

char* p;

cin >> p; // run-time error!

cout << sizeof(a); // 100

cout << sizeof(p); // 8

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 30 / 59

String literals and character pointers

• A character pointer may also be initialized as a string literal.

– When we do so, the system allocates space storing “12345”.

– That space is read-only.

– p stores the address of that space.

char* p = "12345";

cout << p + 2 << "\n"; // 345

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 31 / 59

String literals and character pointers

• In fact, one may assign a string literal to a character pointer at any time.

– What will happen is the same as assigning the string literal at initialization.

• Note that the pointer now points to a different (read-only) place:

char a[100] = "12345";

char* p = a;

p = "abc"; // does not affect a

cout << p << "\n"; // abc

cout << a << "\n"; // 12345

char a[100] = {0};

a = "123"; // compilation error

char* p;

p = "abc"; // okay

char a[100] = "12345";

char* p = a;

p = "abc";

cout << p << "\n";

cin >> p; // run-time error

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 32 / 59

Passing a string to a function

• To pass a string to a function, let the parameter type be a character pointer or a

character array. Then pass an address to it.

#include <iostream>

#include <cstring>

using namespace std;

void reverse(char p[]);

void print(char* p);

int main()

{

char s[100] = "12345";

reverse(&s[1]);

print(s);

return 0;

}

void reverse(char p[])

{

int n = strlen(p);

char* temp = new char[n];

for(int i = 0; i < n; i++)

temp[i] = p[n - i - 1];

for(int i = 0; i < n; i++)

p[i] = temp[i];

delete [] temp;

}

void print(char* p)

{

cout << p << "\n";

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 33 / 59

Main function arguments

• In fact, we may pass arguments to the main function.

– argv[0] is the name of the executable file.

– argv[i] is the ith string passed into main.

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

for(int i = 0; i < argc; i++)

cout << argv[i] << "\n";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 34 / 59

Main function arguments

• To pass a string, add it behind the execution statement.

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 35 / 59

A dynamic character arrays as a C string

• A dynamic character array (pointed by a pointer) can store a C string.

• Be careful when you use dynamic arrays:

char* p = new char[100];

cin >> p;

cout << p << "\n";

p = "123"; // memory leak

cout << p;

delete [] p; // run-time error

char* p = new char[100];

cin >> p;

cout << p;

delete p;

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 36 / 59

Outline

• Characters

• C strings

• C string processing functions

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 37 / 59

C String processing functions

• The C++ standard library <cstring> contains many useful pointer-based

string processing functions.

– Query: strlen.

– Searching: strchr, strstr.

– Concatenation: strcat, strncat.

– Copying: strcpy, strncpy.

– Comparison: strcmp, strncmp.

– Splitting: strtok.

• The C++ standard library <cstdlib> contains some more.

– String-number conversion: atoi, atof.

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 38 / 59

String length query

• The function strlen returns the string length of a given C string.

– It returns the number of characters between str and the first ‘\0’.

– It accepts a string literal, a character pointer, and a static character array.

char* p = new char[100];

cin >> p;

cout << strlen(p);

p[3] = '\0';

cout << strlen(p + 1);

delete [] p;

unsigned int strlen(const char* str);

char* p = "12345";

cout << strlen(p) << "\n";

char a[100] = "1234567";

cout << strlen(a) << "\n";

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 39 / 59

String length query

• Note the difference between strlen and sizeof!

– strlen(p) returns 5 because the length of the string pointed by p is 5.

– strlen(a) returns 10 because the length of the string contained in a is 10.

– sizeof(a) return 100 because that is the size of a.

– sizeof(a + 2) returns 8. why?

char* p = "12345";

cout << strlen(p) << "\n";

char a[100] = "1234567890";

cout << strlen(a) << "\n";

cout << sizeof(a) << "\n";

cout << sizeof(a + 2) << "\n";

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 40 / 59

Example: counting the number of spaces

• Recall that we want to count the number of spaces in a given string.

• With strlen, we may do this better.

char a[100] = {0};

while(cin.getline(a, 100))

{

int spaceCount = 0;

for(int i = 0; i < strlen(a); i++)

{

if(a[i] == ' ')

spaceCount++;

}

cout << spaceCount << "\n";

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 41 / 59

Searching in a string

• To find the location of a character in a string (or conclude that it does not exist
in the string), use strchr.

• It returns the address of the first occurrence of the character.

– If the character does not exist, it returns nullptr.

char* strchr(char* str, int character);

char a[100] = "1234567890";

char* p = strchr(a, '8');

if(strchr(a, 'a') == nullptr)

cout << "!!!\n";

cout << strchr(a, '4') << "\n";

cout << strchr(a, '4') - a;

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 42 / 59

Searching for the next occurrence

• Two advanced techniques:

– The returned address may be used to modify the given string.

– The returned address may be used as the starting location of a “new string”

to search for the next occurrence of the character.

• The following program replaces all white spaces to underlines.

char a[100] = "this is a book";

char* p = strchr(a, ' ');

while(p != nullptr)

{

*p = '_';

p = strchr(p, ' '); // why p?

}

cout << a;

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 43 / 59

Searching for a substring

• If we want to search for a substring, we use strstr.

– This returns the address of the first occurrence of str2 in str1.

char a[100] = "this is a book";

char* p = strstr(a, "is");

while(p != nullptr)

{

*p = 'I'; // not p = "IS"!

*(p + 1) = 'S';

p = strstr(p, "is");

}

cout << a;

char* strstr(char* str1, const char* str2);

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 44 / 59

String copying

• In the previous example, replacing a substring in a string requires multiple

character modifications.

• We may do it at once with strcpy.

– It copies the string at source into the array at dest, including the

terminating null character in source. It returns dest.

char* strcpy(char* dest, const char* source);

char a[100] = "watermelon";

char b[100] = "orange";

cout << a << "\n";

strcpy(a, b);

cout << a << "\n";

char a[100] = "watermelon";

char b[100] = "orange";

cout << a << "\n";

strcpy(a, b);

cout << a + 7 << "\n"; // ?

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 45 / 59

String copying

• Let’s modify the previous program:

• It does not work! Why? How to fix it?

char a[100] = "this is a book";

char* p = strstr(a, "is");

while(p != nullptr)

{

strcpy(p, "IS");

p = strstr(p, "is");

}

cout << a;

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 46 / 59

String concatenation

• A similar task is to concatenate two strings. We may use strcat to do this.

– This copies source to the end of dest. The \0 of dest is replaced by the

first character of source. The \0 of source is also copied. It returns dest.

char* strcat(char* dest, const char* source);

char a[100] = "watermelon";

char b[100] = "orange";

cout << a << "\n";

strcat(a, b);

cout << a << "\n";

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 47 / 59

Preparing enough space

• strcpy and strcatmodifies the destination array.

• A programmer must make sure that there is enough space of the modification.

• The destination must be an array (static or dynamic), not just a pointer.

char a[15] = "watermelon";

char b[100] = "orange";

cout << a << "\n";

strcat(a, b); // dangerous!

cout << a << "\n";

char* a;

char b[100] = "orange";

strcat(a, b); // dangerous!

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 48 / 59

Preparing enough space

• To help prevent run-time error, two additional versions are provided:

– If source has at most num characters, only the first num characters in

source are copied. No \0 is copied into dest.

– If source has fewer than num characters, \0will be padded so that in total

num characters are copied.

char* strncpy(char* dest, const char* source, unsigned int num);

char* strncat(char* dest, const char* source, unsigned int num);

char a[15] = "watermelon";

char b[100] = "orange";

strncat(a, b, sizeof(a) - strlen(a) - 1);

cout << a << "\n";

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 49 / 59

String comparisons

• Strings may also be compared alphabetically (consider your dictionaries!).

• We may use strcmp and strncmp to compare two strings.

– They returns 0 if the two strings are identical, a negative number if str1 is

in front of str2, and a positive number if str2 is in front of str1.

– strcmp compares the whole str1 and str2.

– strncmp compares up to num characters.

int strcmp (const char* str1, const char* str2);

int strncmp(const char* str1, const char* str2, unsigned int num);

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 50 / 59

Example: sorting names alphabetically

• Given a set of names, let’s sort them alphabetically.

• For example:

– Before: (John, Mikasa, Eren, Armin).

– After: (Armin, Eren, John, Mikasa).

• Strategy:

– We may implement, e.g., bubble sort.

– To compare two names, we use strcmp.

– When we want to swap two names, we use strcpy.

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 51 / 59

Example: sorting names alphabetically

#include <iostream>

#include <cstring>

using namespace std;

const int CNT = 4;

const int LEN = 10;

void swapName(char* n1, char* n2)

{

char temp[LEN] = {0};

strcpy(temp, n1);

strcpy(n1, n2);

strcpy(n2, temp);

}

int main()

{

char name[CNT][LEN]

= {"John", "Mikasa", "Eren", "Armin"};

for(int i = 0; i < CNT; i++)

for(int j = 0; j < CNT - i - 1; j++)

if(strcmp(name[j], name[j + 1]) > 0)

swapName(name[j], name[j + 1]);

for(int i = 0; i < CNT; i++)

cout << name[i] << " ";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 52 / 59

Example: sorting names alphabetically

• That implementation works, but may be improved.

– A lot of strcpymakes the implementation inefficient.

– Let’s swap pointers instead.

• Strategy:

– Create pointers pointing to names.

– When we find that two names should be swapped, we swap the

corresponding pointers, i.e., exchanging the addresses contained in them.

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 53 / 59

• Why calling by reference?

• Is namemodified?

Example: sorting names alphabetically

#include <iostream>

#include <cstring>

using namespace std;

const int CNT = 4;

const int LEN = 10;

void swapPtr(char*& p1, char*& p2)

{

char* temp = p1;

p1 = p2;

p2 = temp;

}

int main()

{

char name[CNT][LEN]

= {"John", "Mikasa", "Eren", "Armin"};

char* ptr[CNT]

= {name[0], name[1], name[2], name[3]};

for(int i = 0; i < CNT; i++)

for(int j = 0; j < CNT - i - 1; j++)

if(strcmp(ptr[j], ptr[j + 1]) > 0)

swapPtr(ptr[j], ptr[j + 1]);

for(int i = 0; i < CNT; i++)

cout << ptr[i] << " ";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 54 / 59

Splitting a string into substrings

• We often want to split a string into substrings based on some characters.

– E.g., to split a sentence into words based on spaces and punctuation marks.

– E.g., to split a comma-separated row into attributes based on commas.

– These characters are called delimiters. These substrings are called tokens.

• Let’s write a program that split an URL into tokens based on ‘.’ and ‘/’.

– Input: www.im.ntu.edu.tw/~lckung/courses/PD16

– Output: www im ntu edu tw ~lckung courses PD16

• We may implement this by using strchr.

– A better way is to use strtok.

char* strtok(char* str, const char* delimiters);

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 55 / 59

Example: splitting an URL

#include <iostream>

#include <cstring>

using namespace std;

const int CNT = 100;

const int WORD_LEN = 50;

const int SEN_LEN = 1000;

int main()

{

char url[SEN_LEN];

char delim[] = ".\\";

char word[CNT][WORD_LEN] = {0};

int wordCnt = 0;

cin >> url;

char* start = strtok(url, delim);

while(start != nullptr)

{

strcpy(word[wordCnt], start);

wordCnt++;

start = strtok(nullptr, delim);

}

for(int i = 0; i < wordCnt; i++)

cout << word[i] << " ";

return 0;

}

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 56 / 59

Splitting a string into substrings

• The function strtok is special.

• At the first invocation (assuming the first character is not a delimiter):

– str is the beginning of the string to be split, and delimiters is a character

array containing delimiter characters.

– The first delimiter will be found and replaced by \0.

– The returned pointer stores the address of the first token (which is str).

– The location of the first non-delimiter character right after the first delimiter

is recorded internally in the function for future uses.

char* strtok(char* str, const char* delimiters);

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 57 / 59

Splitting a string into substrings

• The function strtok is special.

• At subsequent invocations:

– str should be nullptr.

– The internally recorded starting location is automatically used as the

starting point.

– The next delimiter is replaced by \0.

– The returned pointer stores the address of the current token (which is that

starting location internally stored before this invocation).

char* strtok(char* str, const char* delimiters);

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 58 / 59

Visualization of string splitting

i m . n t u . e d u . t w / ~ l c k u n g \0

i m \0 n t u . e d u . t w / ~ l c k u n g \0

i m \0 n t u \0 e d u . t w / ~ l c k u n g \0

i m \0 n t u \0 e d u \0 t w / ~ l c k u n g \0

i m \0 n t u \0 e d u \0 t w \0 ~ l c k u n g \0

i m \0 n t u \0 e d u \0 t w \0 ~ l c k u n g \0

Characters C strings C strings processing functions

Ling-Chieh Kung (NTU IM)Programming Design – C strings 59 / 59

String-number conversion

• In <cstdlib>, two functions converts a character array into a number:

– For atoi, str should contain only digits (but the first character can be ‘-’).

– For atof, strmay contain at most one ‘.’.

int atoi(const char* str);

double atof(const char* str);

char a[100] = "1234";

cout << atoi(a) * 2 << "\n";

char b[100] = "-12.34";

cout << atof(b) / 2 << "\n";

Characters C strings C strings processing functions

