
Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 1 / 62

Programming Design

Variables and Arrays

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 2 / 62

Variables and arrays

• Today we introduce arrays.

– A collection of variables of the same type.

– An array variable is of an array type, a nonbasic data type.

• There are many nonbasic data types:

– Arrays.

– Pointers.

– Self-defined data types (e.g., classes).

• Before we introduce arrays, let’s talk more about variables and basic data types.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 3 / 62

Outline

• Basic data types

• Constants and casting

• Single-dimensional arrays

• Multi-dimensional arrays

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 4 / 62

Data types, literals, and variables

• Recall that in C++, each variable must be have its data type.

– It tells the system how to allocate memory spaces and how to interpret

those 0s and 1s stored there.

– It will also determine how operations are performed on the variable.

• Here we introduce basic (or built-in or primitive) data types.

– Those provided as part of the C++ standard.

– We will define our own data types later in this semester.

• Before we start, let’s distinguish literals from variables.

– Literals: items whose contents are fixed, e.g., 3, 8.5, and “Hello world”.

– Variables: items whose values may change.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 5 / 62

• The ten C++ basic data types (bytes information comes from the instructor’s

compiler):

• Basic type names are all keywords.

• Number of bytes are compiler-dependent.

Basic data types

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Category Type Bytes Type Bytes

Integers

bool 1 long 4

char 1 unsigned int 4

int 4 unsigned short 2

short 2 unsigned long 4

Fractional numbers float 4 double 8

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 6 / 62

int

• intmeans an integer.

• In Dev-C++ 5.11 for Windows 10:

– An integer uses 4 bytes to store from −231 to 231 − 1.

– unsigned (4 bytes): from 0 to 232 − 1.

– short (2 bytes): from –32768 to 32767.

– long: the same as int.

• The C++ standard only requires a compiler to ensure that:

– The space for a long variable ≥ the space for an int one.

– The space for an int variable ≥ the space for a short one.

• short and long just create integers with different “lengths”.

– In most information systems this is not an issue.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 7 / 62

Limits of int

• The limits of C++ basic data types are stored in <climits>.

• For information, see, e.g., http://www.cplusplus.com/reference/climits/.

#include <iostream>

#include <climits>

using namespace std;

int main()

{

cout << INT_MIN << " " << INT_MAX << "\n";

return 0;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

http://www.cplusplus.com/reference/climits/

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 8 / 62

sizeof

• We may use the sizeof operator to know the size of a variable or a type.

• Dev-C++ (and some other compilers) offers long long for 8-byte integers.

cout << "int " << sizeof(int) << "\n";

cout << "char " << sizeof(char) << "\n";

cout << "bool " << sizeof(bool) << "\n";

short s = 0;

cout << "short int " << sizeof(s) << "\n";

long l = 0;

cout << "long int " << sizeof(l) << "\n";

cout << "unsigned short int " << sizeof(unsigned short) << "\n";

cout << "unsigned int " << sizeof(unsigned) << "\n";

cout << "unsigned long int " << sizeof(unsigned long) << "\n";

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 9 / 62

Overflow

• Be aware of overflow!

– Storing a value that is “too large” to a variable.

int i = 0;

short sGood = 32765;

while(i < 10)

{

short sBad = sGood + i;

cout << sGood + i << " " << sBad << "\n";

i = i + 1;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 10 / 62

Overflow

Source: http://disp.cc/m/tread.php?id=115-70Zv

• Why? Why 2.1 billions?

• 231 – 1 = 2147483647.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 11 / 62

char

• charmeans a character.

– Use one byte (–128 to 127) to store English letters, numbers, symbols, and

special characters (e.g, the newline character).

– Cannot store, e.g, Chinese characters.

• It is also an integer!

– These characters are encoded with the ASCII code in most PCs.

– ASCII = American Standard Code for Information Interchange.

– See the ASCII code mapping in your textbook.

• Nevertheless, avoid doing arithmetic on char.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 12 / 62

Example: ASCII code table 1

• This program prints out common

symbols and their ASCII codes.

#include <iostream>

using namespace std;

int main()

{

for(int c = 33; c <= 126; c++)

{

cout << c << " ";

char cAsChar = c;

cout << cAsChar << "\n";

}

return 0;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 13 / 62

Example: ASCII code table 2

• Here is another version.

• What is the difference?

#include <iostream>

using namespace std;

int main()

{

cout << " 0 1 2 3 4 5 6 7 8 9\n";

cout << " 3 ";

for(int c = 33; c <= 126; c++)

{

if(c % 10 == 0)

{

if(c / 10 <= 9)

cout << " ";

cout << c / 10;

}

char cAsChar = c;

cout << " " << cAsChar;

if(c % 10 == 9)

cout << "\n";

}

return 0;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 14 / 62

Literals in char type

• Use single quotation marks to make your char literal.

– char c = 'c';

– char c = 99;

• Some wrong ways of marking a character:

– Wrong: char c = "c";

– Wrong: char c = 'cc';

• More about charwill be discussed when we talk about casting and strings.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 15 / 62

float and double

• float and double are used to declare fractional numbers.

– Can be 5.0, -6.2, etc.

– Can be 16.25e2 (1.625 × 103 or 1625), 7.33e-3 (0.00733), etc.

• They follow the IEEE floating point standards.

– float uses 4 bytes to store values between 1.4 × 10−45 and 3.4 × 1038.

– double uses 8 bytes to store values between 4.9 × 10−324 and 1.8 × 10308.

• Dev-C++ (and some other compilers) offers long double as a 16-bytes

floating point data type.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 16 / 62

Precision can be a big issue

• Consider the following program:

• Nothing special.

#include<iostream>

#include<cmath> // for sqrt()

using namespace std;

int main()

{

for(int i = 0; i < 100; i++)

{

float f = sqrt(i);

cout << f << " " << f * f << " ";

cout << "\n";

}

return 0;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 17 / 62

Precision can be a big issue

• How about this:

• As modern computers store values in

bits, most decimal fractional

numbers can only be approximated.

– 3

– 3.375

– 3.4375

– 3.4?

int bad = 0;

for(int i = 0; i < 100; i++)

{

float f = sqrt(i);

cout << f << " " << f * f << " ";

if(f * f != i)

{

cout << "!!!";

bad++;

}

cout << "\n";

}

cout << "bad precision: " << bad;

1 . 0 0 01

1 . 0 1 11

0

0

1 . 0 1 11 1

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 18 / 62

Precision can be a big issue

• Let’s see how big

the errors are:

#include<iostream>

#include<cmath>

#include<iomanip> // for setprecision()

using namespace std;

int main()

{

for(int i = 0; i < 100; i++)

{

float f = sqrt(i);

cout << f << " " << setprecision(10) << f * f << " ";

cout << "\n";

}

return 0;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 19 / 62

Precision can be a big issue

• Remedy: “imprecise” comparisons.

• The error tolerance can be neither too large nor too small.

– It should be set according to the property of your own problem.

• To learn more about this issue, study Numerical Methods, Numerical Analysis,

Scientific Computing, etc.

• In this course, we will play with only integers for most of the time.

if(abs(f * f - i) > 0.0001)

{

cout << "!!!";

bad++;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 20 / 62

bool

• A bool variable uses 1 byte to record one Boolean

value: true or false.

– Two literals: true and false.

– 7 bits are wasted.

– All non-zero values are treated as true.

• bool variables play an important role in control

statements!

bool b = 0;

cout << b << "\n";

b = 1;

cout << b << "\n";

b = 10;

cout << b << "\n";

b = 0.1;

cout << b << "\n";

b = -1;

cout << b << "\n";

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 21 / 62

Outline

• Basic data types

• Constants and casting

• Single-dimensional arrays

• Multi-dimensional arrays

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 22 / 62

Constant variables

• Sometimes we want to use a variable to store a particular value.

– In a program doing calculations regarding circles, the value of π may be

used repeatedly.

– We do not want to write many 3.14 throughout the program! Why?

– We may declare pi = 3.14 once and then use pi repeatedly.

• In this case, this variable is actually a symbolic constant.

– We want to prevent it from being modified.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 23 / 62

Constant variables

• A constant is one kind of variables.

• To declare a constant, use the key word const:

– const int a = 100;

– All further assignment operations on a constant generate compilation errors.

– That is why we must initialize a constant.

• It is suggested to use capital characters and underlines to name constants.

This distinguishes them from usual variables.

– const double PI = 3.1416;

– const int MAX_LEVEL = 5;

– Some people use lowercase characters and underlines.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 24 / 62

Casting

• Variables are containers.

• Variables of different types are containers of different sizes/shapes.

– long≥ int≥ short.

– “Shapes” of int and float are different (though sizes are identical).

• A big container may store a small item. A big item must be “cut” to be stored in

a small container.

– So are variables of different types.

short s = 100;

int i = s; // 100

i = 100000;

s = i; // -31072

double d = 5; // d = 5.0

int s = 5.5; // s = 5

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 25 / 62

Casting

• Changing the type of a variable or literal is called casting.

• There are two kinds of casting:

– Implicit casting: from a small type to a large type.

– Explicit casting: from a large type to a small type.

• When implicit casting occurs, there is no value of precision loss.

– The system does that automatically.

– The value of that variable or literal does not change.

– There is no need for a programmer to indicate how to implicitly cast one

small type to a large type.

• To cast a large type to a small type, a programmer is responsible for indicating

how to do it explicitly.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 26 / 62

Explicit casting

• Suppose we want to store 5.6 to an integer:

– int a = 5.6; is not good.

– int a = static_cast<int>(5.6); is better.

• To cast basic data types, we use static_cast:

– When a float or double is cast to an integer value (and there is no value loss),

the fractional part is truncated.

• In the example above, both statements makes a equal 5.

– Then why bothering?

static_cast<type>(expression)

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 27 / 62

Explicit casting

• Explicit casting is to indicate the way of casting we want.

– For basic types, there is only one way to cast a large type to a small type.

– For more complicated types, however, there may be multiple.

• There are four different explicit casting operators.

– static_cast, dynamic_cast, reindivter_cast, and const_cast.

– For basic data types, static_cast is enough.

• By explicitly indicating how to cast:

– This is to make sure that, at the run time, the program runs as we expect.

– This is also to notify other programmers (or the future ourselves).

• Explicit casting also allows for a temporary change of types (see below).

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 28 / 62

Good programming style

• There is an old way of explicit casting:

– For example, int a = (int) 5.6; .

• Try to avoid it!

– This operation includes all four possibilities, and we have no idea which one

will be performed at the run time.

• If possible, try to modify your variable declaration to avoid casting.

(type) expression

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 29 / 62

Casting for division

• Let’s try this program:

• The division operator returns an integer if both operands (numerator and

denominator) are integers.

• How to get our desired results?

– If appropriate, we may change the data types of the operands.

– If not appropriate, we may cast the operands temporarily.

int grade1 = 0, grade2 = 0;

cin >> grade1 >> grade2;

cout << (grade1 + grade2) / 2;

double grade1 = 0, grade2 = 0;

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 30 / 62

Casting for division

• Which one works?

• Casting can be a big issue when we work with nonbasic data types.

• At this moment, just be aware of fractional and integer values.

int grade1 = 0, grade2 = 0;

cin >> grade1 >> grade2;

cout << static_cast<float>((grade1 + grade2) / 2);

int grade1 = 0, grade2 = 0;

cin >> grade1 >> grade2;

cout << static_cast<float>(grade1 + grade2) / 2;

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 31 / 62

Casting a character to an integer

• Try to explain the following program:

• Avoid doing arithmetic on char.

char c = 254;

int a = 10;

cout << c + a; // 8. Why?

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 32 / 62

Outline

• Basic data types

• Constants and casting

• Single-dimensional arrays

• Multi-dimensional arrays

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 33 / 62

Set of similar variables

• Suppose we want to write a program to store five students’ scores.

• We may declare 5 variables.

– int score1, score2, score3, score4, score5;

• What if we have 500 students? How to declare 500 variables?

• Even if we have only 5, we are unable to write a loop to process them.

for(int i = 0; i < 5; i++)

{

cout << score1; // and then?

cout << scorei; // error!

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 34 / 62

Why arrays?

• An array is a collection of variables with the same type.

• To declare five integer variables for scores, we may write:

– These variables are declared with the same array name (score).

– They are distinguished by their indices.

int score[5];

cin >> score[2]; cout << score[2] + score[3];

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 35 / 62

An array is a type

• Arrays are often used with loops.

– Quite often the loop counter is used

as the array index.

• An array is also a (nonbasic) type.

– The type of score is an “integer

array” (of length 5).

– What is this?

• We will go back to this when we introduce pointers.

– For now, just treat an array as a sequence of variables.

int score[5];

for(int i = 0; i < 5; i++)

cin >> score[i];

for(int i = 0; i < 5; i++)

cout << score[i] << " ";

cout << score;

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 36 / 62

Array declaration

• The grammar for declaring an array is

• E.g., int score[5];

– This is an integer array with five elements (the

array length/size is 5).

– Each array element itself is a variable.

– The index starts at 0! They are score[0],

score[1], …, and score[4].

• It occupies 4 bytes × 5 = 20 continuous bytes.

– Try cout << sizeof(score);!

data type array name[number of elements];

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Memory

Address Identifier Value

?

?

?

?

?

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

Score[0]

Score[1]

Score[2]

Score[3]

Score[4]

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 37 / 62

An example

• We have written a program for 5 scores:

• If we have 500 students:

int score[5];

for(int i = 0; i < 5; i++)

cin >> score[i];

for(int i = 0; i < 5; i++)

cout << score[i] << " ";

int score[500];

for(int i = 0; i < 500; i++)

cin >> score[i];

for(int i = 0; i < 500; i++)

cout << score[i] << " ";

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 38 / 62

Array initialization

• Arrays are not initialized automatically.

int array[100];

for(int i = 0; i < 100; i++)

{

cout << array[i] << " ";

if (i % 10 == 9)

cout << "\n";

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 39 / 62

Array initialization

• Various ways of initializing an array:

• To initialize all elements to 0:

int daysInMonth1[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

int daysInMonth2[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

cout << sizeof(daysInMonth2); // 4 * 12 = 48

int daysInMonth3[12] = {31, 28, 31}; // nine 0s

int daysInMonth4[3] = {1, 2, 3, 4}; // error!

int array[100] = {0};

for(int i = 0; i < 100; i++)

{

cout << array[i] << " ";

if (i % 10 == 9)

cout << "\n";

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 40 / 62

Example: inner product

• This program calculates the inner product

of two given 4-dimensional vectors.

• Do these exercises at home:

– Modify the program to allow a user to

decide the values of the two vectors.

– Write a program that calculate the

sum of two vectors.

#include<iostream>

using namespace std;

int main()

{

int a[4] = {1, 2, 3, 4};

int b[4] = {4, 3, 2, 1};

int ip = 0;

for(int i = 0; i < 4; i++)

ip += a[i] * b[i];

cout << ip << "\n";

return 0;

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 41 / 62

The boundary of an array

• In C++, it is allowed for one to “go outside an

array”.

– No compilation error!

– May or may not generate a run time

error: If our program try to access a

memory space allocated to another

program, the operating system will

terminate our program.

– The result is unpredictable.

• A programmer must be aware of array bounds

by herself/himself.

int array[100] = {0};

for(int i = 0; i < 500; i++)

{

cout << array[i] << " ";

if (i % 10 == 9)

cout << "\n";

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 42 / 62

Memory allocation for arrays

• So what happens when we declare or access

an array?

• When we declare an array:

– The system allocates memory spaces

according to the type and length.

– The array variable indicates the

beginning address of the space.

int score[5];

cout << score; // 0x20c648 (Hexadecimal)

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Memory

Address Identifier Value

?

?

?

?

?

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

score

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 43 / 62

Memory indexing for arrays

• When we access an array element:

– The array index indicates the amount of

offset for accessing a memory space.

– score[i]means to take the variable

stored at “starting from score, offset by

i units”.

• So score[i] is always accepted by the

compiler for any value of i.

– Always be careful when using arrays!

cout << score + 2; // 0x20c650

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Memory

Address Identifier Value

?

?

?

?

?

0x20c648

0x20c64c

0x20c650

0x20c654

0x20c658

score

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 44 / 62

• Sometimes we are given an array whose size is not known by us.

• One way of finding the array length is to use sizeof.

– It returns the total number of bytes allocated to that array.

• Suppose the array is named score, its length equals

– sizeof(score) is the total number of bytes allocated to the array.

– sizeof(score[0]) is the number of bytes allocated to the first element.

sizeof(score) / sizeof(score[0]);

Finding the array length

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 45 / 62

Finding the array length

• Example: Let’s print out all elements in an array:

• When using sizeof to count the length of, e.g., an integer array:

– Use sizeof(a) / sizeof(a[0]).

– Do not use sizeof(a) / sizeof(int).

• Why?

int array[] = {1, 2, 3};

int length = sizeof(array) / sizeof(array[0]);

for(int i = 0; i < length; i++)

cout << array[i] << " ";

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 46 / 62

Example: finding the maximum

• How to find the maximum among many numbers?

• We want to write a program that:

– Asks the user to input 10 numbers.

– Once 10 numbers are input, prints out

the maximum.

• How to find the maximum?

– Compare the first two and find the larger one.

– Use it to be compare with the third one.

– And so on.

float value[10] = {0};

for(int i = 0; i < 10; i++)

cin >> value[i];

// and then?

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 47 / 62

Example: finding the maximum

• Let’s record the current maximum at max:

float value[10] = {0};

for (int i = 0; i < 10; i++)

cin >> value[i];

float max = value[0];

for(int i = 1; i < 10; i++)

{

if(value[i] > max)

max = value[i];

}

cout << max;

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 48 / 62

Good programming style

• It is suggested to declare a constant

and use it to:

– Declare an array.

– Control any loop that traverses

the array.

• Why?

const int VALUE_LEN = 10;

float value[VALUE_LEN] = {0};

for (int i = 0; i < VALUE_LEN; i++)

cin >> value[i];

float max = value[0];

for (int i = 1; i < VALUE_LEN; i++)

{

if (value[i] > max)

max = value[i];

}

cout << max;

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 49 / 62

Things you cannot (should not) do

• Suppose that you have two arrays a1 and a2.

– Even if they have the same length and

their elements have the same type, you
cannot write a1 = a2. This results in a

syntax error.

– You also cannot compare two arrays with
==,>, <, etc.

• Why?

• a1 and a2 are just two memory addresses!

• To copy one array to another array, use a loop

to copy each element one by one.

int a1[5] = {1, 2, 3, 4, 5};

int a2[5] = {0};

// a2 = a1; // error!

for(int i = 0; i < 5; i++)

{

a2[i] = a1[i];

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 50 / 62

Things you cannot (should not) do

• Although allowed in Dev-C++, you should not

declare an array whose length is nonconstant.

– This creates a syntax error in some compilers.

– In ANSI C++, the length of an array must be

fixed when it is declared.

• To dynamically determine the array length:

– We will talk about this a few weeks later.

• The index of an array variable should be integer.

– Some compiler allows a fractional index

(casting is done automatically).

// DO NOT do this

int x = 0;

cin >> x;

// very bad!

int array[x];

array[2] = 3; // etc.

// Do this

int x = 0;

cin >> x;

// good!

int* array = new int[x];

array[2] = 3; // etc.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 51 / 62

Outline

• Basic data types

• Constants and casting

• Single-dimensional arrays

• Multi-dimensional arrays

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 52 / 62

Two-dimensional arrays

• While a one-dimensional array is like a vector, a two-dimensional array is like a

matrix or table.

• Intuitively, a two-dimensional array is composed by rows and columns.

– To declare a two-dimensional array, we should specify the numbers of rows

and columns.

• As an example, let’s declare an array with 3 rows and 7 columns.

data type array name[rows][columns];

double score[3][7];

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 53 / 62

• double score[3][7];

– score[0][0] is the 1st and score[0][1] is the 2nd. What are x and y?

Two-dimensional arrays

[0][0]

[1][0]

[2][0]

[0][1] [0][2]

[x][y]

0 1 2 3 4 5 6

0

1

2

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 54 / 62

Two-dimensional arrays

• We may initialize a two-dimensional array as follows:

int score1[2][3] = {{4, 5, 6}, {7, 8, 9}};

int score2[][3] = {4, 5, 6, 7, 8, 9}; // 2 can be omitted.

int score3[2][3] = {{4, 5}, {7, 8, 9}};

cout << score3[0][2]; // 0

int score4[2][3] = {4, 5, 7, 8, 9};

cout << score4[0][2]; // 7

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 55 / 62

Example: tic-tac-toe

• Let’s write a program to detect the winner of a tic-tac-toe game:

int a[3][3] = {{1, 0, 1}, {1, 1, 0}, {0, 0, 1}};

for(int i = 0; i < 2; i++)

{

if(a[i][0] == a[i][1] && a[i][1] == a[i][2])

{

cout << a[i][0] << endl;

break;

}

}

// then check for columns and diagonals

× ○ ×

× × ○

○ ○ ×

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 56 / 62

Example: matrix additions

• Let’s write a program to do

matrix additions.

int a[2][3] = {{1, 2, 3}, {1, 2, 3}};

int b[2][3] = {{4, 5, 6}, {7, 8, 9}};

int c[2][3] = {0};

for(int i = 0; i < 2; i++) // matrix addition

for(int j = 0; j < 3; j++)

c[i][j] = a[i][j] + b[i][j];

for(int i = 0; i < 2; i ++) // print out c

{

for(int j = 0; j < 3; j ++)

cout << c[i][j] << " ";

cout << "\n";

}

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 57 / 62

Example: matrix multiplications

• Let’s write a program to do matrix multiplications.

int a[2][3] = {1, 1, 1, 2, 2, 2};

int b[3][4] = {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3};

int c[2][4] = {0};

for(int i = 0; i < 2; i++)

for(int j = 0; j < 4; j++)

for(int k = 0; k < 3; k++)

c[i][j] += a[i][k] * b[k][j];

// print out c

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 58 / 62

Embedded one-dimensional arrays

• Two-dimensional arrays are not actually rows and columns.

• A two-dimensional array is actually several one-dimensional arrays.

• Try this:

score[0]

score[1]

score[2]

int a[2][3];

cout << a << " " << a[0] << " " << a[1] << endl;

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

[0][0] [0][1] [0][2]

[1][0]

[2][0]

0 1 2 3 4 5 6

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 59 / 62

Embedded one-dimensional arrays

• int a[2][3];

– a[0][0] is the first element.

– a[0][1] is the second element.

– a[1][0] is the fourth element.

• Two dimensional arrays are stored linearly.

– And still consecutively.

• Try this:

int a[2][3];

cout << a << " " << a[0] << "\n";

cout << a[1] << " " << a + 1 << "\n";

cout << sizeof(a) << " " << sizeof(a[0]) << "\n";

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Memory

Address Identifier Value

?

?

?

?

?

?

0x20c648

0x20c64c

0x20c65c

0x20c650

0x20c654

0x20c658

a[0]

a[1]

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 60 / 62

Embedded one-dimensional arrays

• So for a two dimensional array score:

– score[0] is the ____th one-dimensional array.

– score[i][j] is the ____th element of the ____th one-dimensional array.

– score[i] is the ____th one-dimensional array.

• Which description is more accurate?

– There is an array having three rows and seven columns.

– There is an array having three rows, each having seven elements.

• All these one-dimensional arrays must be of the same length.

– Two-dimensional arrays with various row lengths can be built with pointers.

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 61 / 62

Multi-dimensional arrays

• We may have arrays with even higher

dimensions (but hard to use).

– int threeDim[2][3][4];

– This is an array of 2 × 3 × 4 = 24
integers.

– They together occupies 24 × 8 = 192
bytes (in a continuous space in the

memory).

– threeDim is still the address of the

first element threeDim[0][0][0].

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Memory

Address Identifier Value

threeDim[0][0][0]

threeDim[0][0][1]

threeDim[1][2][3]

?

?

⋮

?

0x20c600

0x20c604

⋮

0x20c65c

Ling-Chieh Kung (NTU IM)Programming Design – Variables and Arrays 62 / 62

Multi-dimensional arrays

threeDim

threeDim[1]

threeDim[1][1]

Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

[0][0][0]

[0][1][0]

[0][2][0]

[1][0][0]

[1][1][0]

[1][2][0]

[0][0][1]

[0][1][1]

[0][2][1]

[1][0][1]

[1][1][1]

[1][2][1]

[0][0][2]

[0][1][2]

[0][2][2]

[1][0][2]

[1][1][2]

[1][2][2]

[0][0][3]

[0][1][3]

[0][2][3]

[1][0][3]

[1][1][3]

[1][2][3]

[1][0][0]

[1][1][0]

[1][2][0]

[1][0][1]

[1][1][1]

[1][2][1]

[1][0][2]

[1][1][2]

[1][2][2]

[1][0][3]

[1][1][3]

[1][2][3]

[1][1][0] [1][1][1] [1][1][2] [1][1][3]

