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Inheritance

• The three main characteristic/functionalities of OOP: 

– Encapsulation: packaging + data hiding. 

– Inheritance. 

– Polymorphism.

• Through inheritance, we may create new classes from existing classes. 

– A derived (child) class inherits a base (parent) class. 

– A child class has (some) members defined in the parent class. 

• This is particularly useful when “XXX is a OOO”.

– An apple is a fruit. 

– A circle is a shape. 

– A truck is a vehicle. 
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The first example

• Recall that we have defined MyVector. 

• A two-dimensional (2D) vector is a vector! 

• Let’s create a class for 2D vector by 

inheritance. 

class MyVector

{

protected: // to be explained

int n; 

double* m; 

public:

MyVector();

MyVector(int n, double m[]);  

MyVector(const MyVector& v);

~MyVector()

void print() const;

// ==, !=, <, [], =, +=

};

MyVector

MyVector2D
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Brothers and sisters

• One parent class can be inherited by multiple child classes. 

MyVector

MyVector2D MyVector3D MyVector8D
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Child class MyVector2D

• That is all for MyVector2D! 

– The modifier publicwill be discussed later. 

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);  

};

MyVector2D::MyVector2D()

{

this->n = 2;

}

MyVector2D::MyVector2D(double m[]) : MyVector(2, m)

{

}

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

v.print();

cout << v[1] << endl;

return 0;

}

Inheritance An example Polymorphism



Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 7 / 62

Inheriting parent class’ members

• Members in the parent class are automatically defined in the child class. 

– Except private members, constructors, 

and the destructor. 

– A protected member can only be accessed 

by itself and its successors. 

• What are the members of MyVector2D? 

class MyVector

{

protected:

int n; 

double* m; 

public:

MyVector();

MyVector(int n, double m[]);  

MyVector(const MyVector& v);

~MyVector()

void print() const;

// ==, !=, <, [], =, +=

};

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);  

};
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Invoking parent class’ constructors

• The parent class’ constructor will not be inherited. 

• One of them will be invoked before the child class’ constructor is invoked. 

– Create the parent before creating the child! 

• If not specified, the parent’s default constructor will be invoked. 

MyVector::MyVector(): n(0), m(nullptr) 

{

}

MyVector2D::MyVector2D()

{

this->n = 2;

// this->m = nullptr is redundant

}

int main()

{

MyVector2D v;

return 0;

}
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Invoking parent class’ constructors

• To specify a parent’s constructor to call, use  the syntax for member initializer: 

– Pass appropriate arguments to control the behavior. 

MyVector::MyVector(int n, double m[])

{

this->n = n;

this->m = new double[n];

for(int i = 0; i < n; i++)

this->m[i] = m[i];

}

MyVector2D::MyVector2D(double m[]) : MyVector(2, m)

{

// not MyVector(2, m) here! 

}

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

v.print();

cout << v[1] << endl;

return 0;

}
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Invoking copy constructors

• How about the copy constructor? 

• If we do not define one for the child, 

the system provides a default one. 

• Before the child’s default copy 

constructor is invoked, the 

parent’s copy constructor will be 

automatically invoked. 

MyVector::MyVector(const MyVector& v)

{

this->n = v.n;

this->m = new double[n];

for(int i = 0; i < n; i++)

this->m[i] = v.m[i];

}

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);  

// no copy constructor

};
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Invoking copy constructors

• If we define a copy constructor for the child, we must specify the constructor 

we want to invoke! 

– Otherwise the parent’s default constructor will be invoked. 

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);  

MyVector2D(const MyVector2D& v) {} 

};

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

MyVector2D w(v);

w.print(); // error

cout << w[1] << endl;

return 0;

}
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Using parent’s member functions

• Once member variables are set properly, typically all the member functions of 

the parent can be used with no error. 

void MyVector::print() const 

{

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

double& MyVector::operator[](int i) 

{

if(i < 0 || i >= n)

exit(1);

return m[i];

}

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

v.print();

cout << v[1] << endl;

return 0;

}
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Defining new members for the child

• A child may have its own 

members. 

– The parent has no way to 

access a child’s member. 

• Let’s define a setValue()

function without using arrays: 

– Note that this should never
be a member of MyVector. 

• We may also define new 

member variables and static 

members. 

class MyVector2D : public MyVector

{

public:

MyVector2D() { this-> n = 2; }

MyVector2D(double m[]) : MyVector(2, m) {}

void setValue(double i1, double i2);

};

void MyVector2D::setValue(double i1, double i2)

{

if(this->m == nullptr)

this->m = new double[2];

this->m[0] = i1;

this->m[1] = i2;

}
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Invoking parent class’ destructor

• When an object of the child class is to 

be destroyed:

– First the child’s destructor is invoked. 

– Then the parent’s destructor is 

invoked automatically, even if we do 

not define a destructor for the child. 

MyVector::~MyVector() 

{ 

delete [] m; 

}

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);  

// no destructor

};
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Summary

• Using inheritance to create 

new classes is so simple! 

– We save time and 

enhance consistency. 

– Pay attention to default 

constructors, copy 

constructors, and 

destructors. 

– If one thing should not be 

inherited, set it to private. 

class MyVector2D : public MyVector

{ // change private to protected in MyVector

public:

MyVector2D() { this-> n = 2; }

MyVector2D(double m[]) : MyVector(2, m) {}

void setValue(double i1, double i2);

};

void MyVector2D::setValue(double i1, double i2)

{

if(this->m == nullptr)

this->m = new double[2];

this->m[0] = i1;

this->m[1] = i2;

}
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Function overriding

• We may also redefine existing 

member inherited from a parent. 

– This typically happens to 

member functions. 

– We say that we override the 

member function. 

• As an example, let’s override 
print(): 

class MyVector2D : public MyVector

{

public:

MyVector2D() { this-> n = 2; }

MyVector2D(double m[]) : MyVector(2, m) {}

void setValue(double i1, double i2);

void print() const;

};

void MyVector2D::print() const

{

cout << "2D: (";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}
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Function overriding

• To override a parent’s member function, define a child’s member function with 

exactly the same function signature. 

– A child object will invoke the child’s implementation. 

– The parent’s implementation becomes hidden to a child object. 

• Inside the child class, we may invoke a parent’s member function by using ::. 

– Use it if consistency can be enhanced. 

void MyVector2D::print() const

{

cout << "2D: ";

MyVector::print();

}
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Overriding a constant function

• What will happen to the following

program? 
class MyVector

{

// ...

void print() const;

};

class MyVector2D : public MyVector

{

// ...

void print() { MyVector::print(); }

void print() const

{

cout << "2D: ";

MyVector::print();

}

};

int main()

{

double i[2] = {1, 2};

const MyVector2D v(i);

v.print(); // 2D: (1, 2)

MyVector2D u;

u.setValue(3, 4);

u.print(); // (3, 4)

return 0;

}
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Overriding a constant function

• How about this? 

class MyVector

{

// ...

void print() const;

};

class MyVector2D : public MyVector

{

// ...

void print() 

{ 

MyVector::print(); 

}

};

int main()

{

double i[2] = {1, 2};

const MyVector2D v(i);

v.print(); // error! 

MyVector2D u;

u.setValue(3, 4);

u.print(); // (3, 4)

return 0;

}
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Overriding a member variable? 

• Technically, we may override a member variable. 

• In general, overriding a parent’s member variable is not suggested. 

– Unless you really know what you are doing. 

– After all, we will inheritance because we believe XXX is a OOO. A parent’s 

member variable should be a part of a child! 

• Overriding a parent’s member function is useful. 

• What is the difference between function overloading and function overriding? 

• Sometimes we override a member function for efficiency.
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Cascade inheritance

• While a child inherits its parent, it may have a grandchild 

inheriting itself. 

• How may we create a class for two-dimensional 

nonnegative vectors? 

– {(x, y) | x≧ 0, y≧ 0}. 

• A 2D nonnegative vector is a 2D vector! 

• Let’s use inheritance again. 

MyVector

MyVector2D

NNVector2D
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Child class NNVector2D

• Defining NNVector2D is simple: 

• What happens when an NNVector2D object is created? 

– If we do not specify a parent’s constructor, the default one will be invoked. 

class NNVector2D : public MyVector2D

{

public:

NNVector2D(); // MyVector2D's

// constructor? 

NNVector2D(double m[]);  

void setValue(double i1, double i2);

};

NNVector2D::NNVector2D()

{

}

NNVector2D::NNVector2D(double m[])

{

this->m = new double[2];

this->m[0] = m[0] >= 0 ? m[0] : 0;

this->m[1] = m[1] >= 0 ? m[1] : 0;  

}

void NNVector2D::setValue

(double i1, double i2)

{

if(this->m == nullptr)

this->m = new double[2];

this->m[0] = i1 >= 0 ? i1 : 0;

this->m[1] = i2 >= 0 ? i2 : 0;  

}
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Child class NNVector2D

• An alternative implementation: 

NNVector2D::NNVector2D(double m[]) : MyVector2D(m)

{

if(m[0] < 0)

this->m[0] = 0;

if(m[1] < 0)

this->m[1] = 0;

}

Inheritance An example Polymorphism



Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 24 / 62

Cascade inheritance

• In general, a class has all the protected and public members (excluding 

constructors and destructors) of its predecessors. 

• When an object is created: 

– Constructors are invoked from the oldest class to the youngest class. 

– Each constructor can specify a one-level-above constructor to invoke. 

– Only one level! 

• When an object is destroyed: 

– Destructors are invoked from the youngest to the oldest. 
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Inheritance visibility

• Recall that we added the modifier publicwhen MyVector2D inherits 

MyVector and when NNVector2D inherits MyVector2D. 

– This modifier specifies the inheritance visibility. 

– It shows how this child modify the member visibility set by its predecessors. 

• When one inherits something from its parent, it may narrow the visibility of 

these members. 

– E.g., if my parent set its to protected, I may set it to private. 

– E.g., if my parent set its to private, I cannot set it to public. 

• Why only narrowing? 
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Inheritance visibility

• In general, the visibility of a member in a child class depends on: 

– The member visibility by the parent. 

– The inheritance modifier. 

• If you have no idea, just use public inheritance. 

Inheritance An example Polymorphism
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Multiple inheritance

• Suppose your friend argues: 

– A two-dimensional 

vector is a vector. 

– A nonnegative vector is 

a vector. 

– A two-dimensional 

nonnegative vector 

should be the child of 

them! 

• Does that make sense? 

MyVector

MyVector2D

NNVector2D

NNVector
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Multiple inheritance

• In C++, multiple inheritance is allowed. 

• However, it is not recommended! 

– In some other object-oriented programming languages (e.g., Java), multiple 

inheritance is forbidden.  

• If there are multiple parents: 

– Whose constructor/destructor goes first? 

– Whose variables are stored in the front? 

– May I inherit from my sister? May I inherit from my  grandaunt? 

• We also suggest you not to do multiple inheritance (even though it has been 

used in C++ standard library). 
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An RPG game

• In a typical Role-Playing Game (RPG), a player plays the role of a character, 

who keep beating enemies (monsters, bad guys, or other players' characters). 

– By beating enemies, one earns experience points to advance to higher 

levels and become stronger. 

• In many RPGs, one can choose the occupation for her character(s). The 

occupation typically affects the ability of a character (e.g., a warrior and a 

wizard are quite different). 

– Characters with different occupations have different attributes and behave 

differently. However, they are all characters. 

• Given a class Character that defines some general features of an RPG 

character, let’s create two new classes Warrior and Wizard.
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Class Character

• The class Character includes the 

name, current level, accumulated 

experience points, and three ability 

levels: power, knowledge, and luck. 

– When a character joins your team, 

she/he may be at any level. 

– For all characters in our game, the 

number of experience points 

required for level k is 100(k – 1)2. 

– The number 100 is stored as a 
static constant EXP_LV.

class Character

{

protected:

static const int EXP_LV = 100;

string name;

int level;

int exp;

int power;

int knowledge;

int luck;

};
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Class Character

• There is a constructor:

– To create a character, we must 

specify all its attributes except the 

experience point. 

– A new character at level k always 

starts with 100(k – 1)2 experience 

points.

• There is a public function print():

– It prints out the current status of a 

character.

class Character

{

protected:

static const int EXP_LV = 100;

string name;

int level;

int exp;

int power;

int knowledge;

int luck;

public:

Character(string n, int lv, 

int po, int kn, int lu);

void print();

};
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Class Character

• There is a public function 
beatMonster(int exp):

– It is invoked when the character 

beats a monster. 

– exp is the number of experience 

points earns in this battle. 

– This function increments the 

accumulated experience points 

and brings up one’s level when 

possible. 

class Character

{

protected:

static const int EXP_LV = 100;

string name;

int level;

int exp;

int power;

int knowledge;

int luck;

public:

Character(string n, int lv, 

int po, int kn, int lu);

void print();

void beatMonster(int exp);

};
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Class Character

• There is a private function levelUp():

– The character's levelwill be 

incremented.

– However, her abilities will remain 

the same because characters of 

different occupations should get 

different improvements. 

– This should be specified in 
Warrior and Wizard. 

• Finally, let’s add a public member 
function getName() to return the name 

of a character. 

class Character

{

protected:

static const int EXP_LV = 100;

// the six attributes

void levelUp

(int pInc, int kInc, int lInc); 

// protected member function

public:

Character(string n, int lv, 

int po, int kn, int lu);

void print();

void beatMonster(int exp);

string getName();

};
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Implementation of Character

Character::Character(string n, int lv, int po, int kn, int lu) 

: name(n), level(lv), exp(pow(lv - 1, 2) * EXP_LV), 

power(po), knowledge(kn), luck(lu) 

{

}

void Character::print() {

cout << this->name // Mikasa: 100 (980100/1000000), 1000-500-500

<< ": Level " << this->level 

<< " (" << this->exp << "/" << pow(this->level, 2) * EXP_LV << "), " 

<< this->power << "-" << this->knowledge << "-" << this->luck << "\n";

} 

string Character::getName() 

{

return this->name;

}
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Implementation of Character

void Character::beatMonster(int exp) 

{

this->exp += exp;

while(this->exp >= pow(this->level, 2) * EXP_LV)

this->levelUp(0, 0, 0); // No improvement when advancing to the next level

}

void Character::levelUp(int pInc, int kInc, int lInc) {

this->level++; 

this->power += pInc; 

this->knowledge += kInc; 

this->luck += lInc;    

}
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Character, Warrior, and Wizard

• Character should not be used to 

create an object. 

– No improvement when advancing 

to the next level. 

– Personal attributes for 

improvements per level are not 

defined. 

• We define two derived classes 
Warrior and Wizard: 

– Character is an abstract class. 

– Warrior and Wizard are 

concrete classes. 

Character

Warrior Wizard
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Classes Warrior and Wizard

class Warrior : public Character

{

private:

static const int PO_LV = 10;

static const int KN_LV = 5;

static const int LU_LV = 5;

public:

Warrior(string n, int lv = 1) 

: Character(n, lv, lv * PO_LV, lv * KN_LV, lv * LU_LV) {}

void print() { cout << "Warrior "; Character::print(); } 

void beatMonster(int exp) // function overriding

{

this->exp += exp;

while(this->exp >= pow(this->level, 2) * EXP_LV)

this->levelUp(PO_LV, KN_LV, LU_LV);

}

};
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Classes Warrior and Wizard

class Wizard : public Character

{

private:

static const int PO_LV = 4;

static const int KN_LV = 9;

static const int LU_LV = 7;

public:

Wizard(string n, int lv = 1) 

: Character(n, lv, lv * PO_LV, lv * KN_LV, lv * LU_LV) {}

void print() { cout << "Wizard "; Character::print(); } 

void beatMonster(int exp) // function overriding

{

this->exp += exp;

while(this->exp >= pow(this->level, 2) * EXP_LV)

this->levelUp(PO_LV, KN_LV, LU_LV);

}

};
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Some questions

• We may create Warrior and Wizard objects in 

our program. 

– May we prevent one from creating a 
Character object? 

• A “team” has at most ten members. 

– We create two arrays, one for warriors and one 

for wizards. Each of them has a length of 10. 

– Why wasting spaces? 

class Team

{

private:

int warriorCount;

int wizardCount;

Warrior* warrior[10];

Wizard* wizard[10];

public:

Team();

~Team();

// some other functions

};
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Some questions

• We may need to add a 

warrior/wizard, let a 

warrior/wizard beat a monster, 

and print the current status of a 

warrior/wizard. 

– Characters’ names are all 

different. 

• Either we write two functions 

for a task, or write just one. 

– Two: tedious and 

inconsistent. 

– One: Inefficient. 

class Team

{

private:

int warriorCount;

int wizardCount;

Warrior* warrior[10];

Wizard* wizard[10];

public:

Team();

~Team();

void addWar(string name, int lv);

void addWiz(string name, int lv);

void warBeatMonster(string name, int exp);

void wizBeatMonster(string name, int exp);

void printWar(string name);

void printWiz(string name);

};
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Polymorphism

• The key flaw is to create two arrays, one for warriors and one for wizards. 

– May we use only one array to store the ten members? 

– But Warrior and Wizard are different classes. 

• While they are different classes, they have the same base class. 

– They are all Characters! 

– May we declare a Character array to store Warrior and Wizard objects? 

• We can. This is called polymorphism. 

– In C++, the way we implement polymorphism is to 

“Use a variable of a parent type to 

store a value of a child type.”
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Variables vs. values

• Let’s differentiate a variable’s type and a value’s type. 

• A variable can store values and must have a type. 

– E.g., a double variable is a container which “should” store a double value. 

• A value is the thing that is stored in a variable. 

– E.g., 12.5 or 7. 

• A value has its own type, which may be different from the variable’s type. 

• In C++, a parent variable can store a child object. 
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Why a parent variable for a child value?

• What happens to the following 

program?  

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

};

class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c) 

: Parent(a, b) 

{ z = c; } 

};

int main

{

Parent p1(1, 2);

Child c1(3, 4, 5);

Parent p2 = c1; // OK: 5 is discarded

// Child c2 = p1; // Not OK: no v3

return 0;

}
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Examples of polymorphism

• For example, we may do this: 

– A Character variable can 

store a Warrior or a 

Wizard object. 

– Because a warrior/wizard is 

a character! 

• Alternatively, we may do this 

with pointers: 

int main

{

Warrior w("Alice", 10);

Character c = w; 

cout << c.getName() << endl; // Alice

return 0;

}

int main

{

Warrior w("Alice", 10);  

Character* c = &w; 

cout << c->getName() << endl; // Alice

return 0;

}
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Polymorphism with functions

• Polymorphism is useful with functions:

void printInitial(Character c)

{

string name = c.getName();

cout << name[0];

}

int main

{

Warrior alice("Alice", 10); 

Wizard bob("Bob", 8); 

printInitial(alice);

printInitial(bob);

return 0;

}
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Polymorphism with arrays

• Polymorphism is useful with arrays:  

int main

{

Character* c[3]; 

c[0] = new Warrior("Alice", 10); 

c[1] = new Wizard("Sophie", 8); 

c[2] = new Warrior("Amy", 12); 

for(int i = 0; i < 3; i++)

c[i]->print(); 

for(int i = 0; i < 3; i++)

delete c[i]; 

// not delete [] c;

return 0;

}

int main

{

Character c[3]; // error! Why? 

Warrior w1("Alice", 10);

Wizard w2("Sophie", 8);

Warrior w3("Amy", 12);

c[0] = w1;

c[1] = w2;

c[2] = w3;

for(int i = 0; i < 3; i++)

c[i].print(); 

return 0;

}
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Class Teamwith Polymorphism

• With polymorphism, we may redefine the class Team: 

class Team

{

private:

int memberCount;

Character* member[10];

public:

Team();

~Team();

void addWarrior(string name, int lv);

void addWizard(string name, int lv);

void memberBeatMonster(string name, int exp);

void printMember(string name);

};
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Class Teamwith Polymorphism

Team::Team()

{

memberCount = 0;

for(int i = 0; i < 10; i++)

member[i] = nullptr;

}

Team::~Team()

{

for(int i = 0; 

i < memberCount; i++)

delete member[i];

}

void Team::addWarrior(string name, int lv) 

{

if(memberCount < 10)

{

member[memberCount] = new Warrior(name, lv);

memberCount++;

}

}

void Team::addWizard(string name, int lv)

{

if(memberCount < 10)

{

member[memberCount] = new Wizard(name, lv);

memberCount++;

}

}
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Class Teamwith Polymorphism

void Team::memberBeatMonster

(string name, int exp)

{

for(int i = 0; i < memberCount; i++)

{

if(member[i]->getName() == name)

{

member[i]->beatMonster(exp);

break;

}

}  

}

void Team::printMember(string name)

{

for(int i = 0; i < memberCount; i++)

{

if(member[i]->getName() == name)

{

member[i]->print();

break;

}

}

}
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Remaining questions

• We still cannot prevent one from creating 
a Character object. 

• What happens to the following program:  

– No “Warrior ” and “Wizard ” printed 

out. 

– No experience point accumulated. 

• Why? 

int main()

{

Character* c[3]; 

c[0] = new Warrior("Alice", 10); 

c[1] = new Wizard("Sophie", 8); 

c[2] = new Warrior("Amy", 12); 

c[0]->beatMonster(10000);

for(int i = 0; i < 3; i++)

c[i]->print();

for(int i = 0; i < 3; i++)

delete c[i]; 

return 0;

}
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Invoking an overridden function

• Suppose a parent variable 

stores a child value (or a 

parent pointer pointing to a 

child object). 

• If we use the parent variable 

(pointer) to invoke an 

overridden function, the 

default setting is to invoke the 

parent’s implementation. 

• To invoke the child’s one, we 

need late binding and virtual 

functions. 

class A

{

public:

void a() { cout << "a\n"; } 

void f() { cout << "af\n"; 

} 

};

class B : public A

{

public:

void b() { cout << "b\n"; }

void f() { cout << "bf\n"; 

}

};

int main()

{

B b;

A a = b;

A* ap = &b;

a.a();

a.f();

// a.b();

ap->a();

ap->f();

// ap->b();

return 0;

}
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Early binding vs. late binding

• When we do A a = b or A* a = &b, we are 

using polymorphism. 

• For A a = b, the system does early binding: 

– a occupies only four bytes for storing i. 

– a does not have a space for storing j. 

– Its type is set to be A at compilation. 

• For A* a = &b, the system does late binding: 

– a is just a pointer. 

– It can point to an A object or a B object. 

– Its “type” can be set at the run time. 

class A

{

protected:

int i;

public:

void a() { cout << "a\n"; } 

void f() { cout << "af\n"; } 

};

class B : public A

{

private:

int j;

public:

void b() { cout << "b\n"; }

void f() { cout << "bf\n"; }

};
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Early binding may discard values

• Why p2.print()must be the 

parent class’ print()? 

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

void print() { cout << x << " " << y; }

};

Class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c) : P(a, b) 

{ z = c; } 

void print() { cout << z; }

};

int main

{

Child c(3, 4, 5);

Parent p = c; // 5 is discarded

p.print(); // which print()?

return 0;

}
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Late binding does not discard values

• Is it possible for p2->print()

to be the child class’ print()? 

• To invoke the child’s 

implementation, we need to 

declare virtual functions. 

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

void print() { cout << x << " " << y; }

};

Class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c) : Parent(a, b) 

{ z = c; } 

void print() { cout << z; }

};

int main

{

Child c(3, 4, 5);

Parent* pPtr = &c; // 5 is good

pPtr->print(); // which print()?

return 0;

}
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Virtual functions

• If we declare a parent’s 

member function to be 

virtual, its invocation 

priority will be lower than a 

child’s (if we use late 

binding). 

– A child cannot declare a 

parent’s function as 

virtual (it is of no use). 

• In summary, we need:

– Late binding + virtual 

functions. 

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

virtual void print() { cout << x << " " << y; }

};

Class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c) : Parent(a, b) 

{ z = c; } 

void print() { cout << z; }

};
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Virtual functions

• For our Character class, simply declare 

beatMonster() and print() as virtual. 

• Warrior and Wizard override the two 

functions. Now their versions get invoked. 

class Character

{

protected:

// ...

public:

// ...

virtual void beatMonster(int exp);

virtual void print();

};

int main()

{

Character* c[3]; 

c[0] = new Warrior("Alice", 10); 

c[1] = new Wizard("Sophie", 8); 

c[2] = new Warrior("Amy", 12); 

c[0]->beatMonster(10000);

for(int i = 0; i < 3; i++)

c[i]->print(); 

for(int i = 0; i < 3; i++)

delete c[i]; 

return 0;

}
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Abstract classes

• The two virtual functions are different in their natures: 

– print() is invoked in the children’s implementations. 

– beatMonster() should not be invoked by any one. 

• We may set beatMonster() to be a pure virtual function: 

– Now we do not need to implement it. 

– Moreover, we cannot create Character objects! 

class Character

{

// ...

virtual void beatMonster(int exp) = 0;

};
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Polymorphism is everywhere

• Recall MyVector, its overloaded operator ==, and its child MyVector2D.

• Why can the program run? 

• In fact, we may also compare MyVector2Dwith MyVector, MyVector2Dwith 

MyVector2D, NNVectorwith MyVector, NNVectorwith MyVector2D, etc. 

class MyVector

{

// ...

public:

// ...

bool operator==(const MyVector& v) const;

};

int main()

{

double d[3] = {1, 2, 3}; 

MyVector v1(3, d);

MyVector2D v2(4, 5);

cout << v1 == v2 << endl; // good? 

return 0;

}
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Polymorphism is everywhere

• The same thing happens to the copy constructor: 

void printInitial(Character c)

{

string name = c.getName();

cout << name[0];

}

int main

{

Warrior alice("Alice", 10); 

Wizard bob("Bob", 8); 

printInitial(alice); // Character's copy constructor

printInitial(bob); // Character's copy constructor

return 0;

}
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Summary

• Polymorphism is a technique to make our program clearer, more flexible and 

more powerful. 

– It is based on inheritance. 

– It is tightly related to function overriding, late binding, and virtual 

functions.

• The key action is to “use a parent pointer to point to a child object”. 

• To implement late binding, you need to

– Declare and override virtual functions.

– Do late binding by using parent pointers to point to child objects. 
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