
Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 1 / 62

Programming Design

Inheritance and Polymorphism

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 2 / 62

Outline

• Inheritance

• An example

• Polymorphism

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 3 / 62

Inheritance

• The three main characteristic/functionalities of OOP:

– Encapsulation: packaging + data hiding.

– Inheritance.

– Polymorphism.

• Through inheritance, we may create new classes from existing classes.

– A derived (child) class inherits a base (parent) class.

– A child class has (some) members defined in the parent class.

• This is particularly useful when “XXX is a OOO”.

– An apple is a fruit.

– A circle is a shape.

– A truck is a vehicle.

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 4 / 62

The first example

• Recall that we have defined MyVector.

• A two-dimensional (2D) vector is a vector!

• Let’s create a class for 2D vector by

inheritance.

class MyVector

{

protected: // to be explained

int n;

double* m;

public:

MyVector();

MyVector(int n, double m[]);

MyVector(const MyVector& v);

~MyVector()

void print() const;

// ==, !=, <, [], =, +=

};

MyVector

MyVector2D

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 5 / 62

Brothers and sisters

• One parent class can be inherited by multiple child classes.

MyVector

MyVector2D MyVector3D MyVector8D

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 6 / 62

Child class MyVector2D

• That is all for MyVector2D!

– The modifier publicwill be discussed later.

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);

};

MyVector2D::MyVector2D()

{

this->n = 2;

}

MyVector2D::MyVector2D(double m[]) : MyVector(2, m)

{

}

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

v.print();

cout << v[1] << endl;

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 7 / 62

Inheriting parent class’ members

• Members in the parent class are automatically defined in the child class.

– Except private members, constructors,

and the destructor.

– A protected member can only be accessed

by itself and its successors.

• What are the members of MyVector2D?

class MyVector

{

protected:

int n;

double* m;

public:

MyVector();

MyVector(int n, double m[]);

MyVector(const MyVector& v);

~MyVector()

void print() const;

// ==, !=, <, [], =, +=

};

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 8 / 62

Invoking parent class’ constructors

• The parent class’ constructor will not be inherited.

• One of them will be invoked before the child class’ constructor is invoked.

– Create the parent before creating the child!

• If not specified, the parent’s default constructor will be invoked.

MyVector::MyVector(): n(0), m(nullptr)

{

}

MyVector2D::MyVector2D()

{

this->n = 2;

// this->m = nullptr is redundant

}

int main()

{

MyVector2D v;

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 9 / 62

Invoking parent class’ constructors

• To specify a parent’s constructor to call, use the syntax for member initializer:

– Pass appropriate arguments to control the behavior.

MyVector::MyVector(int n, double m[])

{

this->n = n;

this->m = new double[n];

for(int i = 0; i < n; i++)

this->m[i] = m[i];

}

MyVector2D::MyVector2D(double m[]) : MyVector(2, m)

{

// not MyVector(2, m) here!

}

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

v.print();

cout << v[1] << endl;

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 10 / 62

Invoking copy constructors

• How about the copy constructor?

• If we do not define one for the child,

the system provides a default one.

• Before the child’s default copy

constructor is invoked, the

parent’s copy constructor will be

automatically invoked.

MyVector::MyVector(const MyVector& v)

{

this->n = v.n;

this->m = new double[n];

for(int i = 0; i < n; i++)

this->m[i] = v.m[i];

}

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);

// no copy constructor

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 11 / 62

Invoking copy constructors

• If we define a copy constructor for the child, we must specify the constructor

we want to invoke!

– Otherwise the parent’s default constructor will be invoked.

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);

MyVector2D(const MyVector2D& v) {}

};

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

MyVector2D w(v);

w.print(); // error

cout << w[1] << endl;

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 12 / 62

Using parent’s member functions

• Once member variables are set properly, typically all the member functions of

the parent can be used with no error.

void MyVector::print() const

{

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

double& MyVector::operator[](int i)

{

if(i < 0 || i >= n)

exit(1);

return m[i];

}

int main()

{

double i[2] = {1, 2};

MyVector2D v(i);

v.print();

cout << v[1] << endl;

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 13 / 62

Defining new members for the child

• A child may have its own

members.

– The parent has no way to

access a child’s member.

• Let’s define a setValue()

function without using arrays:

– Note that this should never
be a member of MyVector.

• We may also define new

member variables and static

members.

class MyVector2D : public MyVector

{

public:

MyVector2D() { this-> n = 2; }

MyVector2D(double m[]) : MyVector(2, m) {}

void setValue(double i1, double i2);

};

void MyVector2D::setValue(double i1, double i2)

{

if(this->m == nullptr)

this->m = new double[2];

this->m[0] = i1;

this->m[1] = i2;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 14 / 62

Invoking parent class’ destructor

• When an object of the child class is to

be destroyed:

– First the child’s destructor is invoked.

– Then the parent’s destructor is

invoked automatically, even if we do

not define a destructor for the child.

MyVector::~MyVector()

{

delete [] m;

}

class MyVector2D : public MyVector

{

public:

MyVector2D();

MyVector2D(double m[]);

// no destructor

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 15 / 62

Summary

• Using inheritance to create

new classes is so simple!

– We save time and

enhance consistency.

– Pay attention to default

constructors, copy

constructors, and

destructors.

– If one thing should not be

inherited, set it to private.

class MyVector2D : public MyVector

{ // change private to protected in MyVector

public:

MyVector2D() { this-> n = 2; }

MyVector2D(double m[]) : MyVector(2, m) {}

void setValue(double i1, double i2);

};

void MyVector2D::setValue(double i1, double i2)

{

if(this->m == nullptr)

this->m = new double[2];

this->m[0] = i1;

this->m[1] = i2;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 16 / 62

Function overriding

• We may also redefine existing

member inherited from a parent.

– This typically happens to

member functions.

– We say that we override the

member function.

• As an example, let’s override
print():

class MyVector2D : public MyVector

{

public:

MyVector2D() { this-> n = 2; }

MyVector2D(double m[]) : MyVector(2, m) {}

void setValue(double i1, double i2);

void print() const;

};

void MyVector2D::print() const

{

cout << "2D: (";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 17 / 62

Function overriding

• To override a parent’s member function, define a child’s member function with

exactly the same function signature.

– A child object will invoke the child’s implementation.

– The parent’s implementation becomes hidden to a child object.

• Inside the child class, we may invoke a parent’s member function by using ::.

– Use it if consistency can be enhanced.

void MyVector2D::print() const

{

cout << "2D: ";

MyVector::print();

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 18 / 62

Overriding a constant function

• What will happen to the following

program?
class MyVector

{

// ...

void print() const;

};

class MyVector2D : public MyVector

{

// ...

void print() { MyVector::print(); }

void print() const

{

cout << "2D: ";

MyVector::print();

}

};

int main()

{

double i[2] = {1, 2};

const MyVector2D v(i);

v.print(); // 2D: (1, 2)

MyVector2D u;

u.setValue(3, 4);

u.print(); // (3, 4)

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 19 / 62

Overriding a constant function

• How about this?

class MyVector

{

// ...

void print() const;

};

class MyVector2D : public MyVector

{

// ...

void print()

{

MyVector::print();

}

};

int main()

{

double i[2] = {1, 2};

const MyVector2D v(i);

v.print(); // error!

MyVector2D u;

u.setValue(3, 4);

u.print(); // (3, 4)

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 20 / 62

Overriding a member variable?

• Technically, we may override a member variable.

• In general, overriding a parent’s member variable is not suggested.

– Unless you really know what you are doing.

– After all, we will inheritance because we believe XXX is a OOO. A parent’s

member variable should be a part of a child!

• Overriding a parent’s member function is useful.

• What is the difference between function overloading and function overriding?

• Sometimes we override a member function for efficiency.

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 21 / 62

Cascade inheritance

• While a child inherits its parent, it may have a grandchild

inheriting itself.

• How may we create a class for two-dimensional

nonnegative vectors?

– {(x, y) | x≧ 0, y≧ 0}.

• A 2D nonnegative vector is a 2D vector!

• Let’s use inheritance again.

MyVector

MyVector2D

NNVector2D

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 22 / 62

Child class NNVector2D

• Defining NNVector2D is simple:

• What happens when an NNVector2D object is created?

– If we do not specify a parent’s constructor, the default one will be invoked.

class NNVector2D : public MyVector2D

{

public:

NNVector2D(); // MyVector2D's

// constructor?

NNVector2D(double m[]);

void setValue(double i1, double i2);

};

NNVector2D::NNVector2D()

{

}

NNVector2D::NNVector2D(double m[])

{

this->m = new double[2];

this->m[0] = m[0] >= 0 ? m[0] : 0;

this->m[1] = m[1] >= 0 ? m[1] : 0;

}

void NNVector2D::setValue

(double i1, double i2)

{

if(this->m == nullptr)

this->m = new double[2];

this->m[0] = i1 >= 0 ? i1 : 0;

this->m[1] = i2 >= 0 ? i2 : 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 23 / 62

Child class NNVector2D

• An alternative implementation:

NNVector2D::NNVector2D(double m[]) : MyVector2D(m)

{

if(m[0] < 0)

this->m[0] = 0;

if(m[1] < 0)

this->m[1] = 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 24 / 62

Cascade inheritance

• In general, a class has all the protected and public members (excluding

constructors and destructors) of its predecessors.

• When an object is created:

– Constructors are invoked from the oldest class to the youngest class.

– Each constructor can specify a one-level-above constructor to invoke.

– Only one level!

• When an object is destroyed:

– Destructors are invoked from the youngest to the oldest.

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 25 / 62

Inheritance visibility

• Recall that we added the modifier publicwhen MyVector2D inherits

MyVector and when NNVector2D inherits MyVector2D.

– This modifier specifies the inheritance visibility.

– It shows how this child modify the member visibility set by its predecessors.

• When one inherits something from its parent, it may narrow the visibility of

these members.

– E.g., if my parent set its to protected, I may set it to private.

– E.g., if my parent set its to private, I cannot set it to public.

• Why only narrowing?

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 26 / 62

Inheritance visibility

• In general, the visibility of a member in a child class depends on:

– The member visibility by the parent.

– The inheritance modifier.

• If you have no idea, just use public inheritance.

Inheritance An example Polymorphism

Member visibility

by the parent

public

protected

private

public

protected

private

public

protected

protected

private

protected

private

private

private

private

Inheritance modifier

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 27 / 62

Multiple inheritance

• Suppose your friend argues:

– A two-dimensional

vector is a vector.

– A nonnegative vector is

a vector.

– A two-dimensional

nonnegative vector

should be the child of

them!

• Does that make sense?

MyVector

MyVector2D

NNVector2D

NNVector

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 28 / 62

Multiple inheritance

• In C++, multiple inheritance is allowed.

• However, it is not recommended!

– In some other object-oriented programming languages (e.g., Java), multiple

inheritance is forbidden.

• If there are multiple parents:

– Whose constructor/destructor goes first?

– Whose variables are stored in the front?

– May I inherit from my sister? May I inherit from my grandaunt?

• We also suggest you not to do multiple inheritance (even though it has been

used in C++ standard library).

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 29 / 62

Outline

• Inheritance

• An example

• Polymorphism

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 30 / 62

An RPG game

• In a typical Role-Playing Game (RPG), a player plays the role of a character,

who keep beating enemies (monsters, bad guys, or other players' characters).

– By beating enemies, one earns experience points to advance to higher

levels and become stronger.

• In many RPGs, one can choose the occupation for her character(s). The

occupation typically affects the ability of a character (e.g., a warrior and a

wizard are quite different).

– Characters with different occupations have different attributes and behave

differently. However, they are all characters.

• Given a class Character that defines some general features of an RPG

character, let’s create two new classes Warrior and Wizard.

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 31 / 62

Class Character

• The class Character includes the

name, current level, accumulated

experience points, and three ability

levels: power, knowledge, and luck.

– When a character joins your team,

she/he may be at any level.

– For all characters in our game, the

number of experience points

required for level k is 100(k – 1)2.

– The number 100 is stored as a
static constant EXP_LV.

class Character

{

protected:

static const int EXP_LV = 100;

string name;

int level;

int exp;

int power;

int knowledge;

int luck;

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 32 / 62

Class Character

• There is a constructor:

– To create a character, we must

specify all its attributes except the

experience point.

– A new character at level k always

starts with 100(k – 1)2 experience

points.

• There is a public function print():

– It prints out the current status of a

character.

class Character

{

protected:

static const int EXP_LV = 100;

string name;

int level;

int exp;

int power;

int knowledge;

int luck;

public:

Character(string n, int lv,

int po, int kn, int lu);

void print();

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 33 / 62

Class Character

• There is a public function
beatMonster(int exp):

– It is invoked when the character

beats a monster.

– exp is the number of experience

points earns in this battle.

– This function increments the

accumulated experience points

and brings up one’s level when

possible.

class Character

{

protected:

static const int EXP_LV = 100;

string name;

int level;

int exp;

int power;

int knowledge;

int luck;

public:

Character(string n, int lv,

int po, int kn, int lu);

void print();

void beatMonster(int exp);

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 34 / 62

Class Character

• There is a private function levelUp():

– The character's levelwill be

incremented.

– However, her abilities will remain

the same because characters of

different occupations should get

different improvements.

– This should be specified in
Warrior and Wizard.

• Finally, let’s add a public member
function getName() to return the name

of a character.

class Character

{

protected:

static const int EXP_LV = 100;

// the six attributes

void levelUp

(int pInc, int kInc, int lInc);

// protected member function

public:

Character(string n, int lv,

int po, int kn, int lu);

void print();

void beatMonster(int exp);

string getName();

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 35 / 62

Implementation of Character

Character::Character(string n, int lv, int po, int kn, int lu)

: name(n), level(lv), exp(pow(lv - 1, 2) * EXP_LV),

power(po), knowledge(kn), luck(lu)

{

}

void Character::print() {

cout << this->name // Mikasa: 100 (980100/1000000), 1000-500-500

<< ": Level " << this->level

<< " (" << this->exp << "/" << pow(this->level, 2) * EXP_LV << "), "

<< this->power << "-" << this->knowledge << "-" << this->luck << "\n";

}

string Character::getName()

{

return this->name;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 36 / 62

Implementation of Character

void Character::beatMonster(int exp)

{

this->exp += exp;

while(this->exp >= pow(this->level, 2) * EXP_LV)

this->levelUp(0, 0, 0); // No improvement when advancing to the next level

}

void Character::levelUp(int pInc, int kInc, int lInc) {

this->level++;

this->power += pInc;

this->knowledge += kInc;

this->luck += lInc;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 37 / 62

Character, Warrior, and Wizard

• Character should not be used to

create an object.

– No improvement when advancing

to the next level.

– Personal attributes for

improvements per level are not

defined.

• We define two derived classes
Warrior and Wizard:

– Character is an abstract class.

– Warrior and Wizard are

concrete classes.

Character

Warrior Wizard

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 38 / 62

Classes Warrior and Wizard

class Warrior : public Character

{

private:

static const int PO_LV = 10;

static const int KN_LV = 5;

static const int LU_LV = 5;

public:

Warrior(string n, int lv = 1)

: Character(n, lv, lv * PO_LV, lv * KN_LV, lv * LU_LV) {}

void print() { cout << "Warrior "; Character::print(); }

void beatMonster(int exp) // function overriding

{

this->exp += exp;

while(this->exp >= pow(this->level, 2) * EXP_LV)

this->levelUp(PO_LV, KN_LV, LU_LV);

}

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 39 / 62

Classes Warrior and Wizard

class Wizard : public Character

{

private:

static const int PO_LV = 4;

static const int KN_LV = 9;

static const int LU_LV = 7;

public:

Wizard(string n, int lv = 1)

: Character(n, lv, lv * PO_LV, lv * KN_LV, lv * LU_LV) {}

void print() { cout << "Wizard "; Character::print(); }

void beatMonster(int exp) // function overriding

{

this->exp += exp;

while(this->exp >= pow(this->level, 2) * EXP_LV)

this->levelUp(PO_LV, KN_LV, LU_LV);

}

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 40 / 62

Some questions

• We may create Warrior and Wizard objects in

our program.

– May we prevent one from creating a
Character object?

• A “team” has at most ten members.

– We create two arrays, one for warriors and one

for wizards. Each of them has a length of 10.

– Why wasting spaces?

class Team

{

private:

int warriorCount;

int wizardCount;

Warrior* warrior[10];

Wizard* wizard[10];

public:

Team();

~Team();

// some other functions

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 41 / 62

Some questions

• We may need to add a

warrior/wizard, let a

warrior/wizard beat a monster,

and print the current status of a

warrior/wizard.

– Characters’ names are all

different.

• Either we write two functions

for a task, or write just one.

– Two: tedious and

inconsistent.

– One: Inefficient.

class Team

{

private:

int warriorCount;

int wizardCount;

Warrior* warrior[10];

Wizard* wizard[10];

public:

Team();

~Team();

void addWar(string name, int lv);

void addWiz(string name, int lv);

void warBeatMonster(string name, int exp);

void wizBeatMonster(string name, int exp);

void printWar(string name);

void printWiz(string name);

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 42 / 62

Outline

• Inheritance

• An example

• Polymorphism

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 43 / 62

Polymorphism

• The key flaw is to create two arrays, one for warriors and one for wizards.

– May we use only one array to store the ten members?

– But Warrior and Wizard are different classes.

• While they are different classes, they have the same base class.

– They are all Characters!

– May we declare a Character array to store Warrior and Wizard objects?

• We can. This is called polymorphism.

– In C++, the way we implement polymorphism is to

“Use a variable of a parent type to

store a value of a child type.”

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 44 / 62

Variables vs. values

• Let’s differentiate a variable’s type and a value’s type.

• A variable can store values and must have a type.

– E.g., a double variable is a container which “should” store a double value.

• A value is the thing that is stored in a variable.

– E.g., 12.5 or 7.

• A value has its own type, which may be different from the variable’s type.

• In C++, a parent variable can store a child object.

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 45 / 62

Why a parent variable for a child value?

• What happens to the following

program?

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

};

class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c)

: Parent(a, b)

{ z = c; }

};

int main

{

Parent p1(1, 2);

Child c1(3, 4, 5);

Parent p2 = c1; // OK: 5 is discarded

// Child c2 = p1; // Not OK: no v3

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 46 / 62

Examples of polymorphism

• For example, we may do this:

– A Character variable can

store a Warrior or a

Wizard object.

– Because a warrior/wizard is

a character!

• Alternatively, we may do this

with pointers:

int main

{

Warrior w("Alice", 10);

Character c = w;

cout << c.getName() << endl; // Alice

return 0;

}

int main

{

Warrior w("Alice", 10);

Character* c = &w;

cout << c->getName() << endl; // Alice

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 47 / 62

Polymorphism with functions

• Polymorphism is useful with functions:

void printInitial(Character c)

{

string name = c.getName();

cout << name[0];

}

int main

{

Warrior alice("Alice", 10);

Wizard bob("Bob", 8);

printInitial(alice);

printInitial(bob);

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 48 / 62

Polymorphism with arrays

• Polymorphism is useful with arrays:

int main

{

Character* c[3];

c[0] = new Warrior("Alice", 10);

c[1] = new Wizard("Sophie", 8);

c[2] = new Warrior("Amy", 12);

for(int i = 0; i < 3; i++)

c[i]->print();

for(int i = 0; i < 3; i++)

delete c[i];

// not delete [] c;

return 0;

}

int main

{

Character c[3]; // error! Why?

Warrior w1("Alice", 10);

Wizard w2("Sophie", 8);

Warrior w3("Amy", 12);

c[0] = w1;

c[1] = w2;

c[2] = w3;

for(int i = 0; i < 3; i++)

c[i].print();

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 49 / 62

Class Teamwith Polymorphism

• With polymorphism, we may redefine the class Team:

class Team

{

private:

int memberCount;

Character* member[10];

public:

Team();

~Team();

void addWarrior(string name, int lv);

void addWizard(string name, int lv);

void memberBeatMonster(string name, int exp);

void printMember(string name);

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 50 / 62

Class Teamwith Polymorphism

Team::Team()

{

memberCount = 0;

for(int i = 0; i < 10; i++)

member[i] = nullptr;

}

Team::~Team()

{

for(int i = 0;

i < memberCount; i++)

delete member[i];

}

void Team::addWarrior(string name, int lv)

{

if(memberCount < 10)

{

member[memberCount] = new Warrior(name, lv);

memberCount++;

}

}

void Team::addWizard(string name, int lv)

{

if(memberCount < 10)

{

member[memberCount] = new Wizard(name, lv);

memberCount++;

}

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 51 / 62

Class Teamwith Polymorphism

void Team::memberBeatMonster

(string name, int exp)

{

for(int i = 0; i < memberCount; i++)

{

if(member[i]->getName() == name)

{

member[i]->beatMonster(exp);

break;

}

}

}

void Team::printMember(string name)

{

for(int i = 0; i < memberCount; i++)

{

if(member[i]->getName() == name)

{

member[i]->print();

break;

}

}

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 52 / 62

Remaining questions

• We still cannot prevent one from creating
a Character object.

• What happens to the following program:

– No “Warrior ” and “Wizard ” printed

out.

– No experience point accumulated.

• Why?

int main()

{

Character* c[3];

c[0] = new Warrior("Alice", 10);

c[1] = new Wizard("Sophie", 8);

c[2] = new Warrior("Amy", 12);

c[0]->beatMonster(10000);

for(int i = 0; i < 3; i++)

c[i]->print();

for(int i = 0; i < 3; i++)

delete c[i];

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 53 / 62

Invoking an overridden function

• Suppose a parent variable

stores a child value (or a

parent pointer pointing to a

child object).

• If we use the parent variable

(pointer) to invoke an

overridden function, the

default setting is to invoke the

parent’s implementation.

• To invoke the child’s one, we

need late binding and virtual

functions.

class A

{

public:

void a() { cout << "a\n"; }

void f() { cout << "af\n";

}

};

class B : public A

{

public:

void b() { cout << "b\n"; }

void f() { cout << "bf\n";

}

};

int main()

{

B b;

A a = b;

A* ap = &b;

a.a();

a.f();

// a.b();

ap->a();

ap->f();

// ap->b();

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 54 / 62

Early binding vs. late binding

• When we do A a = b or A* a = &b, we are

using polymorphism.

• For A a = b, the system does early binding:

– a occupies only four bytes for storing i.

– a does not have a space for storing j.

– Its type is set to be A at compilation.

• For A* a = &b, the system does late binding:

– a is just a pointer.

– It can point to an A object or a B object.

– Its “type” can be set at the run time.

class A

{

protected:

int i;

public:

void a() { cout << "a\n"; }

void f() { cout << "af\n"; }

};

class B : public A

{

private:

int j;

public:

void b() { cout << "b\n"; }

void f() { cout << "bf\n"; }

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 55 / 62

Early binding may discard values

• Why p2.print()must be the

parent class’ print()?

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

void print() { cout << x << " " << y; }

};

Class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c) : P(a, b)

{ z = c; }

void print() { cout << z; }

};

int main

{

Child c(3, 4, 5);

Parent p = c; // 5 is discarded

p.print(); // which print()?

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 56 / 62

Late binding does not discard values

• Is it possible for p2->print()

to be the child class’ print()?

• To invoke the child’s

implementation, we need to

declare virtual functions.

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

void print() { cout << x << " " << y; }

};

Class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c) : Parent(a, b)

{ z = c; }

void print() { cout << z; }

};

int main

{

Child c(3, 4, 5);

Parent* pPtr = &c; // 5 is good

pPtr->print(); // which print()?

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 57 / 62

Virtual functions

• If we declare a parent’s

member function to be

virtual, its invocation

priority will be lower than a

child’s (if we use late

binding).

– A child cannot declare a

parent’s function as

virtual (it is of no use).

• In summary, we need:

– Late binding + virtual

functions.

class Parent

{

protected:

int x;

int y;

public:

Parent(int a, int b) : x(a), y(b) {}

virtual void print() { cout << x << " " << y; }

};

Class Child : public Parent

{

protected:

int z;

public:

Child(int a, int b, int c) : Parent(a, b)

{ z = c; }

void print() { cout << z; }

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 58 / 62

Virtual functions

• For our Character class, simply declare

beatMonster() and print() as virtual.

• Warrior and Wizard override the two

functions. Now their versions get invoked.

class Character

{

protected:

// ...

public:

// ...

virtual void beatMonster(int exp);

virtual void print();

};

int main()

{

Character* c[3];

c[0] = new Warrior("Alice", 10);

c[1] = new Wizard("Sophie", 8);

c[2] = new Warrior("Amy", 12);

c[0]->beatMonster(10000);

for(int i = 0; i < 3; i++)

c[i]->print();

for(int i = 0; i < 3; i++)

delete c[i];

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 59 / 62

Abstract classes

• The two virtual functions are different in their natures:

– print() is invoked in the children’s implementations.

– beatMonster() should not be invoked by any one.

• We may set beatMonster() to be a pure virtual function:

– Now we do not need to implement it.

– Moreover, we cannot create Character objects!

class Character

{

// ...

virtual void beatMonster(int exp) = 0;

};

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 60 / 62

Polymorphism is everywhere

• Recall MyVector, its overloaded operator ==, and its child MyVector2D.

• Why can the program run?

• In fact, we may also compare MyVector2Dwith MyVector, MyVector2Dwith

MyVector2D, NNVectorwith MyVector, NNVectorwith MyVector2D, etc.

class MyVector

{

// ...

public:

// ...

bool operator==(const MyVector& v) const;

};

int main()

{

double d[3] = {1, 2, 3};

MyVector v1(3, d);

MyVector2D v2(4, 5);

cout << v1 == v2 << endl; // good?

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 61 / 62

Polymorphism is everywhere

• The same thing happens to the copy constructor:

void printInitial(Character c)

{

string name = c.getName();

cout << name[0];

}

int main

{

Warrior alice("Alice", 10);

Wizard bob("Bob", 8);

printInitial(alice); // Character's copy constructor

printInitial(bob); // Character's copy constructor

return 0;

}

Inheritance An example Polymorphism

Ling-Chieh Kung (NTU IM)Programming Design – Inheritance and Polymorphism 62 / 62

Summary

• Polymorphism is a technique to make our program clearer, more flexible and

more powerful.

– It is based on inheritance.

– It is tightly related to function overriding, late binding, and virtual

functions.

• The key action is to “use a parent pointer to point to a child object”.

• To implement late binding, you need to

– Declare and override virtual functions.

– Do late binding by using parent pointers to point to child objects.

Inheritance An example Polymorphism

