
Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 1 / 61

Programming Design

Selection and Repetition

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 2 / 61

Outline

• Preprocessors and namespaces

• Selection

• Repetition

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 3 / 61

Preprocessors and namespaces

• Recall that our first C++ program was

• Now it is time to formally introduce the first two lines.

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 4 / 61

Preprocessors

• Preprocessor commands, which
begins with #, performs some actions

before the compiler does the

translation.

• The include command here is to

include a header file:

– Files containing definitions of

common variables and functions.

– Written to be included by other

programs.

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 5 / 61

Preprocessors

• #include <iostream>

– iostream is part of the C++

standard library. It provides

functionalities of data input and
output, e.g., cout and cin.

• Before the compilation, the compiler
looks for the iostream header file

and copy the codes therein to replace

this line.

– The same thing happens when

we include other header files.

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 6 / 61

Including header files

• In this program, we include the iostream file for the cout object.

• With angle brackets (< and >), the compiler searches for “iostream” in the C++

standard library.

• We may define our own variables and functions into self-defined header files

and include them by ourselves:

– #include "C:\myHeader.h";

– Use double quotation marks instead of angle brackets.

– A path must be specified.

• We will not use self-defined header files in the first half of this semester.

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 7 / 61

Namespaces

• What is a namespace?

• Suppose all roads in Taiwan have

different names. In this case, we do

not need to include the city/county

name in our address.

– This is why we do not need to

specify the district for an address

in the Taipei city.

– But we need to specify the district

for an address in the New Taipei

County.

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 8 / 61

Namespaces

• A C++ namespace is a collection

(space) of names.

– For C++ variables, functions,

objects, etc.

– The objects cout, cin, and all

other items defined in the C++

standard library are defined in the
namespace std..

• By writing using namespace std;,

whenever the compiler sees a name, it

searches whether it is defined in this
program or the namespace std.

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 9 / 61

The scope resolution operator (::)

• Instead, we may specify the namespace of cout each time when we use it with

the scope resolution operation ::.

• Most programmers do not need to define their own namespaces.

– Unless you really want to name your own variable/object as cout.

– Typically a using namespace std; statement suffices.

#include <iostream>

int main()

{

std::cout << "Hello World! \n";

return 0;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 10 / 61

Outline

• Preprocessors and namespaces

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 11 / 61

• Last time we studied one kind of selection statement,
the if statement.

– condition returns a Boolean value.

– { }may be dropped if there is only one statement.

• In many cases, we hope that conditional on whether the
condition is true or false, we do different sets of
statements.

• This is done with the if-else statement.

– Do statements 1 if condition returns true.

– Do statements 2 if condition returns false.

• An elsemust have an associated if!

The if statement

if(condition)

{

statements

}

if(condition)

{

statements 1

}

else

{

statements 2

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 12 / 61

• The income tax rate often varies according to the level of income.

– E.g., 2% for income below $10000 but 8% for the part above $10000.

• How to write a program to calculate the amount of income tax based on an input
amount of income?

– Which of the following two programs is correct (or better)?

Example of the if-else statement

int income = 0, tax = 0;

cout << "Please enter your income: ";

cin >> income;

if(income <= 10000)

tax = 0.02 * income;

if(income > 10000)

tax = 0.08 * (income - 10000) + 200;

cout << "Tax amount: $" << tax << "\n";

Preprocessors and namespaces Selection Repetition

int income = 0, tax = 0;

cout << "Please enter your income: ";

cin >> income;

if(income <= 10000)

tax = 0.02 * income;

else

tax = 0.08 * (income - 10000) + 200;

cout << "Tax amount: $" << tax << "\n";

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 13 / 61

• An if or an if-else statement can be nested in
an if block.

– In this example, if both conditions are true,
statements A will be executed.

– If condition 1 is true but condition 2 is false,
statements B will be executed.

– If condition 1 is false, statements C will be
executed.

• An if or an if-else statement can be nested in an
else block.

• We may do this for any level of if or if-else.

Nested if-else statement

if(condition 1)

{

if(condition 2)

{

statements A

}

else

{

statements B

}

}

else

{

statements C

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 14 / 61

• Given three integers a, b, and c,
how to find the smallest one?

• Nested if-else is helpful:

• Some questions:

– What will happen if there are
multiple smallest values?

– May we drop the two pairs of
curly brackets?

Example of nested if-else statements

Preprocessors and namespaces Selection Repetition

int a = 0, b = 0, c = 0;

cin >> a >> b >> c;

if(a <= b)

{

if(a <= c)

cout << a << " is the smallest\n";

else

cout << c << " is the smallest\n";

}

else

{

if(b <= c)

cout << b << " is the smallest\n";

else

cout << c << " is the smallest\n";

}

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 15 / 61

• Good? Bad?

Two different implementations

Preprocessors and namespaces Selection Repetition

int min = 0;

if(a <= b)

{

if(a <= c)

min = a;

else

min = c;

}

else

{

if(b <= c)

min = b;

else

min = c;

}

cout << min << " is the smallest";

int min = c;

if(a <= b)

{

if(a <= c)

min = a;

}

else

{

if(b <= c)

min = b;

}

cout << min << " is the smallest";

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 16 / 61

The ternary if operator ? :

• In many cases, what to do after an if-else selection is simple.

• The ternary if operator ? : can be helpful in this case.

– If condition is true, do operation A; otherwise, operation B.

• Let’s modify the previous example:

Preprocessors and namespaces Selection Repetition

condition ? operation A : operation B

if(a <= b)

a <= c ? min = a : min = c;

else

min = b <= c ? b : c;

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 17 / 61

The ternary if operator ? :

• Parentheses are helpful (though not needed):

• Ternary if operators can also be nested (but not suggested):

Preprocessors and namespaces Selection Repetition

if(a <= b)

(a <= c) ? (min = a) : (min = c);

else

min = (b <= c ? b : c);

min = a <= b ? a <= c ? a : c : b <= c ? a : c;

min = (a <= b ? (a <= c ? a : c) : (b <= c ? a : c));

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 18 / 61

Dangling if-else

• What does this mean?

• In the current C++ standard,

it is actually:

if(a == 10)

if(b == 10)

cout << "a and b are both ten.\n";

else

cout << "a is not ten.\n";

if(a == 10)

{

if(b == 10)

cout << "a and b are both ten.\n";

else

cout << "a is not ten.\n";

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 19 / 61

Dangling if-else

• When we drop { }, our programs may be grammatically ambiguous.

• In the field of Programming Languages, it is called the dangling problem.

• To handle this, C++ defines that “one else will be paired to the closest if that

has not been paired with an else.”

• Good programming style:

– Drop { } only when you know what you are doing.

– Align your { }.

– Indent your codes properly.

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 20 / 61

The else-if statement

• An if-else statement allows us to respond

to a binary condition.

• When we want to respond to a ternary
condition, we may put an if-else

statement in an else block:

• For this situation, people typically drop { }

and put the second if behind else to create

an else-if statement:

if(a < 10)

cout << "a < 10.";

else

{

if(a > 10)

cout << "a > 10.";

else

cout << "a == 10.";

}

if(a < 10)

cout << "a < 10.";

else if(a > 10)

cout << "a > 10.";

else

cout << "a == 10.";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 21 / 61

The else-if statement

• An else-if statement is generated by using

two nested if-else statements.

• It is logically fine if we do not use else-if.

• However, if we want to respond to more than
three conditions, using else-if greatly

enhances the readability of our program.

• Another selection statement, switch-case,

is (sometimes) more appropriate for a

condition that has many realizations and will

be introduced later.

if(month == 1)

cout << "31 days";

else if(month == 2)

cout << "28 days";

else if(month == 3)

cout << "31 days";

else if(month == 4)

cout << "30 days";

else if(month == 5)

cout << "31 days";

// ...

else if(month == 11)

cout << "30 days";

else

cout << "31 days";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 22 / 61

Outline

• Preprocessors and namespaces

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 23 / 61

Logical operators

• In some cases, the condition for an if statement is complicated.

– If I love a girl and she also loves me, we will fall in love.

– If I love a girl but she does not love me, my heart will be broken.

• We may use logical operators to combine multiple conditions.

• We have three logical operators:

– &&: and.

– ||: or.

– !: not.

• These operators have their aliases (and, or, and not). For the aliases of many

operators, see http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B.

Preprocessors and namespaces Selection Repetition

http://en.wikipedia.org/wiki/Operators_in_C_and_C++

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 24 / 61

Logic operators: and

• The “and” operator operates on two conditions.

– Each condition is an operand.

• It returns true if both conditions are true. Otherwise it returns false.

– (3 > 2) && (2 > 3) returns false.

– (3 > 2) && (2 > 1) returns true.

• When we use it in an if statement, the grammar is:

if(condition 1 && condition 2)

{

statements

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 25 / 61

Logic operators: and

• An “and” operation can replace a nested if statement.

– The nested if statement

is equivalent to

• Each of the two conditions

must be complete by itself.

• Two conditions can be combined

only with a logical operator

if(a >= 10)

{

if(a <= 20)

cout << "a is between 10 and 20;";

}

if(a >= 10 && a <= 20)

cout << "a is between 10 and 20;";

Preprocessors and namespaces Selection Repetition

if(a >= 10 && <= 20) // error!

cout << "a is between 10 and 20;";

if(10 <= a <= 20) // error!

cout << "a is between 10 and 20;";

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 26 / 61

Logic operators: or

• The “or” operator returns true if at least one of the two conditions is true.

Otherwise it returns false.

– (3 > 2) || (2 > 3) returns true.

– (3 < 2) || (2 < 1) returns false.

• When the or operator is used in an if statement, the grammar is

if(condition 1 || condition 2)

{

statements

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 27 / 61

• The “not” operator returns the opposite of the condition.

– !(2 > 3) returns true.

– !(2 > 1) returns false.

• It is used when we have statements only in the else block:

– The following two programs are equivalent:

Logic operator: not

if(condition)

;

else

{

statements

}

if(!condition)

{

statements;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 28 / 61

Associativity and precedence

• The && and || operators both associate the

two conditions from left to right.

• It is possible that the second condition is not

evaluated at all.

– If evaluating the first one is enough.

• What will be the outputs?

• There is a precedence rule for operators.

– You may find the rule in the textbook.

– You do not need to memorize them: Just

use parentheses.

int a = 0, b = 0;

if((a > 10) && (b = 1))

;

cout << b << "\n";

if((a > 10) || (b = 5))

;

cout << b << "\n";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 29 / 61

Outline

• Preprocessors and namespaces

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 30 / 61

• The second way of implementing a selection is
to use a switch-case statement.

– It is particularly useful for responding to

multiple values of a single operation.

• For the operation:

– It can contain only a single operand.

– It must return an integer.

The switch-case statement

switch(operation)

{

case value 1:

statements

break;

case value 2:

statements

break;

...

default:

statements

break;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 31 / 61

• After each case, there is a value.

– If the returned value of the operation

equals that value, those statements in the

case block will be executed.

– No curly brackets are needed for blocks.

– A colon is needed after the value.

• A breakmarks the end of a block.

– The break of the last section is optional.

• Restrictions on those values:

– Cannot be (non-constant) variables.

– Must be different integers.

The switch-case statement

switch(operation)

{

case value 1:

statements

break;

case value 2:

statements

break;

...

default:

statements

break;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 32 / 61

• Dropping a break may be useful:• What will happen if we enter 10?

The break statement

int a;

cin >> a;

switch(a)

{

case 10:

cout << "ten";

break;

case 6:

cout << "six";

break;

}

char a;

cin >> a;

switch(a)

{

case 'c':

case 'C':

cout << "c or C.";

}

Preprocessors and namespaces Selection Repetition

int a;

cin >> a;

switch(a)

{

case 10:

cout << "ten";

case 6:

cout << "six";

break;

}

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 33 / 61

The default block

• The default block will be executed if

no case value matches the operation’s

return value.

• You may add a break at the end of

default or not. It does not matter.

int a;

cin >> a;

switch(a)

{

case 10:

cout << "a is ten.";

break;

case 20:

cout << "a is twenty.";

break;

default:

cout << a << "\n";

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 34 / 61

An example

• Given a year and a month, how many days is in that month?

• There are four possibilities:

– 31 days: January, March, May, July, August, October, December.

– 30 days: April, June, September, November.

– 29 days: February in a leap year.

– 28 days: February in an ordinary year.

• A year is a leap year if:

– It is a multiple of 400, or

– It is a multiple of 4 but not a multiple of 100.

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 35 / 61

Two implementations

int y = 0, m = 0;

cin >> y >> m;

int d = 0;

switch(m)

{

case 1: case 3: case 5: case 7:

case 8: case 10: case 12:

d = 31;

break;

case 4: case 6: case 9: case 11:

d = 30;

break;

case 2:

if((y % 400 == 0) ||

(y % 4 == 0 && (y % 100 != 0)))

d = 29;

else

d = 28;

}

cout << d << "\n";

Preprocessors and namespaces Selection Repetition

int y = 0, m = 0;

cin >> y >> m;

int d = 0;

if(m == 1 || m == 3 || m == 5 || m == 7 ||

m == 8 || m == 10 || m == 12)

d = 31;

else if(m == 4 || m == 6 ||

m == 9 || m == 11)

d = 30;

else if((y % 400 == 0) ||

(y % 4 == 0 && (y % 100 != 0)))

d = 29;

else

d = 28;

cout << d << "\n";

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 36 / 61

Outline

• Preprocessors and namespaces

• Selection

• Repetition

– while and do-while

– for

– Something else

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 37 / 61

The while statement

• In many cases, we want to repeatedly execute a set of codes.

• Last time we studied one repetition statement, the while statement.

• What do these programs do?

int sum = 0;

int i = 1;

while(i <= 100)

{

sum = sum + i;

i = i + 1;

}

cout << sum << "\n";

int exit = 0;

// do something

cout << "Press 1 to exit: ";

cin >> exit;

while(exit != 1)

{

// do something

cout << "Press 1 to exit: ";

cin >> exit;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 38 / 61

Modifying loop counters

• Very often we need to add 1 to or subtract 1 from a loop counter.

int sum = 0;

int i = 1;

while(i <= 100)

{

sum = sum + i;

i = i + 1;

}

cout << sum << "\n";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 39 / 61

Modifying loop counters

• Using the unary increment/decrement operator ++/-- can be more convenient.

int sum = 0;

int i = 1;

while(i <= 100)

{

sum = sum + i;

i++;

}

cout << sum << "\n";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 40 / 61

Modifying loop counters

• Binary self-assigning operators (e.g., +=) sometimes help.

int sum = 0;

int i = 1;

while(i <= 100)

{

sum = sum + i;

i += 1;

}

cout << sum << "\n";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 41 / 61

Increment/decrement operators

• In C++, the increment and decrement operators are specific:

– For modifying i, i++ has the same effect as i = i + 1.

– For modifying i, i–– has the same effect as i = i – 1.

• They can be applied on all basic data types.

– But we should only apply them on integers.

• Typically using them is faster than using the corresponding addition/subtraction

and assignment operation.

int i = 10;

i++; // i becomes 11

i--; // i becomes 10

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 42 / 61

Increment/decrement operators

• Both can be put at the left or the right of the operand.

– This changes the order of related operations.

– i++: returns the value of i, and then increment i.

– ++i: increments i, and then returns the incremented value of i.

• What are the values of a and b in these statements?

• i-- and --iwork in the same way.

• So is i = i + 1 equivalent to i++ or ++i?

• Do not make your program hard to understand!

– What is a = b+++++c?

a = 5; b = a++; a = 5; b = ++a;

c++;

a = b + c;

b++;

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 43 / 61

Self-assigning operations

• In many cases, an assignment operation is self-assigning.

– a = a + b, a = a - 20, etc.

• For each of the five arithmetic operators +, -, *, /, and %, there is a

corresponding self-assignment operator.

– a += b means a = a + b.

– a *= b - 2 means a = a * (b – 2) (not a = a * b – 2).

• Typically a += b is faster than a = a + b, etc.

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 44 / 61

• Recall that we validated a user input with a
while statement:

• One drawback of this program is that a set of

same codes must be written twice.

– Inconsistency may then arise.

• To avoid such a situation, we may use a do-

while statement.

The do-while statement

int exit = 0;

// do something

cout << "Press 1 to exit: ";

cin >> exit;

while(exit != 1)

{

// do something

cout << "Press 1 to exit: ";

cin >> exit;

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 45 / 61

• The grammar:

• The revision of the previous program:

• In any case, statements in a do-while

loop must be executed at least once.

• The semicolon is needed.

– Why?

The do-while statement

do

{

statements

} while (operation);

int exit = 0;

do

{

// do something

cout << "Press 1 to exit: ";

cin >> exit;

} while(exit != 1);

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 46 / 61

Outline

• Preprocessors and namespaces

• Selection

• Repetition

– while and do-while

– for

– Something else

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 47 / 61

The for statement

• Another way of implementing a loop is to use a for

statement.

– The curly brackets can be dropped if there is only

one statement.

for(init; cond; some)

{

statements

}

True
init cond statements some

Start End

False

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 48 / 61

The for statement

• You need those two “;” in the ().

• The typical way of using a for statement is:

– init: Initialize a counter variable here.

– cond: Set up the condition on the counter variable for the loop to continue.

– some: Modify (mostly increment or decrement) the counter variable.

– statements: The things that we really want to do.

for(init; cond; some)

{

statements

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 49 / 61

• Let’s calculate the sum of 1 + 2 + … + 100:

– We used while. How about for?

• To use for:

– We declare and initialize the counter
variable i: int i = 1.

– We check the loop condition: i <= 1000.

– We run the statement: sum = sum + i;.

– We then increment the counter: i++. i

becomes 2.

– Then we go back to check the condition,

and so on, and so on.

for vs. while

int sum = 0;

for(int i = 1; i <= 100; i++)

sum = sum + i;

cout << sum;

int sum = 0;

int i = 1;

while(i <= 100)

{

sum = sum + i;

i = i + 1;

}

cout << sum << "\n";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 50 / 61

Multi-counter for loops

• Inside one for statement:

– You may initialize multiple counters at the same time.

– You may also check multiple counters at the same time.

– You may also modify multiple counters at the same time.

• Use “,” to separate operations on multiple counters.

• If any of the conditions is false, the loop will be terminated.

• As an example:

• Try to find alternatives before you use it.

for(int i = 0, j = 0; i < 10, j > -5; i++, j--)

cout << i << " " << j << "\n";

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 51 / 61

Good programming style

• When you need to execute a loop for a fixed number of iterations, use a for

statement with a counter declared only for the loop.

– This also applies if you know the maximum number of iterations.

– This avoids potential conflicts on variable names.

– See “scope of variables” below.

• Use the loop that makes your program the most readable.

• Typically only the counter variable enters the () of a for statement.

• You may use fractional numbers for a counter, but this is not recommended.

– Use integer only!

• Drop { } only when you know what you are doing.

• Align your { }. Indent your codes properly.

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 52 / 61

Scope of variables

• A variable has its scope (or

life cycle).

– Where it is “alive” and

can be accessed.

• For all the variables you

have seen so far, they live

only in the block in which

they are declared.

int b = 0;

if(b < 10)

{

int a = 10;

b++;

}

b = 20; // ok

int b = 0;

while(b < 10)

{

int a = 10;

b++;

}

a = 20; // error

for(int i = 0; i < 10; i++)

{

cout << i << " ";

}

i = 20; // error

int i;

for(i = 0; i < 10; i++)

{

cout << i << " ";

}

i = 20; // ok

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 53 / 61

Scope of variables

int i = 0;

for(; i < 10; i++)

cout << i << " ";

// ...

int i = 0; // error!

for(; i < 10; i++)

cout << i << " ";

Preprocessors and namespaces Selection Repetition

for(int i = 0; i < 10; i++)

cout << i << " ";

// ...

for(int i = 0; i < 10; i++)

cout << i << " ";

int i = 0;

for(; i < 10; i++)

cout << i << " ";

// ...

for(; i < 10; i++)

cout << i << " ";

• What if we remove the erroneous

line?

• This is a good reasons to use for: All loops

at the same level may use the same name

for loop counters.

• Two variables declared in the same

level cannot have the same name.

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 54 / 61

Scope of variables

• However, a variable of an existing name is

allowed to be declared in an inner block.

– In the inner block, after the same

variable name is used to declare a new

variable, it “replaces” the original one.

– However, its life ends when the inner

block ends.

int a = 0;

if(a == 0)

{

cout << a << "\n"; // ?

int a = 10;

cout << a << "\n"; // ?

}

cout << a << "\n"; // ?

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 55 / 61

Outline

• Preprocessors and namespaces

• Selection

• Repetition

– while and do-while

– for

– Something else

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 56 / 61

• Like the selection process, loops can also be nested.

– Outer loop, inner loop, most inner loop, etc.

• Nested loops are not always necessary, but they can be helpful.

– Particularly when we need to handle a multi-dimensional case.

• E.g., write a program to output some integer points on an (x, y)-plane like this:

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

• This can still be done with only

one level of loop. but using a

nested loop is much easier.

Nested loops

for(int x = 1; x <= 3; x++)

{

for(int y = 1; y <= 3; y++)

cout << "(" << x << ", " << y << ") ";

cout << "\n";

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 57 / 61

Infinite loops

• An infinite loop is a loop that does not terminate.

• In many cases an infinite loop is a logical error made by the programmer.

– When it happens, check your program.

• When your program does not stop, press <Ctrl + C>.

int a = 0;

while(a >= 0)

a++;

while(true)

cout << 1;

for(; ;)

cout << 1;

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 58 / 61

• When we implement a repetition process, sometimes we need to further change

the flow of execution of the loop.

• A break statement brings us to exit the loop immediately.

• When continue is executed, statements after it in the loop are skipped.

– The looping condition will be checked immediately.

– If it is satisfied, the loop starts from the beginning again.

• How to write a program to print out all integers from 1 to 100 except multiples
of 10?

break and continue

for(int a = 1; a <= 100; a++)

{

if(a % 10 == 0)

continue;

cout << a << " ";

}

for(int a = 1; a <= 100; a++)

{

if(a % 10 != 0)

cout << a << " ";

}

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 59 / 61

break and continue

• The effect of break and continue is just

on the current level.

– If a break is used in an inner loop, the

execution jumps to the outer loop.

– If a continue is used in an inner loop,

the execution jumps to the condition

check of the inner loop.

• What will be printed out at the end of this

program?

int a = 0, b = 0;

while(a <= 10)

{

while(b <= 10)

{

if(b == 5)

break;

cout << a * b << "\n";

b++;

}

a++;

}

cout << a << "\n"; // ?

Preprocessors and namespaces Selection Repetition

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 60 / 61

Infinite loops with a break

• We may intentionally create an infinite loop and terminate it with a break.

– E.g., we may wait for an “exit” input and then leave the loop with a break.

Preprocessors and namespaces Selection Repetition

int exit = 0;

// do something

cout << "Press 1 to exit: ";

cin >> exit;

while(exit != 1)

{

// do something

cout << "Press 1 to exit: ";

cin >> exit;

}

int exit = 0;

while(true)

{

// do something

cout << " Press 1 to exit: ";

cin >> exit;

if(exit == 1)

break;

}

Ling-Chieh Kung (NTU IM)Programming Design – Selection and Repetition 61 / 61

break and continue

• Using break gives a loop multiple exits.

– It becomes harder to track the flow of a program.

– It becomes harder to know the state after a loop.

• Using continue highlights the need of getting to the next iteration.

– Having too many continue still gets people confused.

• Be careful not to hurt the readability of a program too much.

Preprocessors and namespaces Selection Repetition

