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Complexity

• Given a task, we design algorithms. 

– These algorithms may all be correct. 

– One algorithm may be better than another one. 

– To compare algorithms, we compare their complexity. 

• Time complexity and space complexity:

– Time: We hope an algorithm takes a short time to complete the task. 

– Space: We hope an algorithm uses a small space to complete the task. 

• Let’s see some examples.  
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Space complexity

• Given a matrix 𝐴 of 𝑚 × 𝑛 integers, find the row whose row sum is the largest. 

• Two algorithms:

– For each row, find the sum. Store the 𝑚 row sums, scan through them, and 

find the target row. 

– For each row, find the sum and compare it with the currently largest row 

sum. Update the currently largest row sum if it is larger. 
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Space complexity: algorithm 1

• Let’s implement algorithm 1:

const int MAX_COL_CNT = 3;

const int MAX_ROW_CNT = 4;

int maxRowSum(int A[][MAX_COL_CNT], 

int m, int n)

{

// calculate row sums

int rowSum[MAX_ROW_CNT] = {0};

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

rowSum[i] = aRowSum;

}

// find the row with the max row sum

int maxRowSumValue = rowSum[0];

int maxRowNumber = 1;

for(int i = 0; i < m; i++)

{

if(rowSum[i] > maxRowSumValue)

{

maxRowSumValue = rowSum[i];

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}
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Space complexity: algorithm 2

• Let’s implement algorithm 2: int maxRowSum(int A[][MAX_COL_CNT], 

int m, int n)

{

int maxRowSumValue = 0;

int maxRowNumber = 0;

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

if(aRowSum > maxRowSumValue)

{

maxRowSumValue = aRowSum;

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}
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Space complexity: comparison

• The two algorithms use different amounts of space: 

– Algorithm 1: Declaring an array and three integers.  

– Algorithm 2: Declaring three integers. 

• Algorithm 2 has the lower space complexity. 
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Time complexity

• In general, people care more about time complexity. 

– When we say “complexity,” we mean time complexity. 

• Intuitively, the complexity of an algorithm can be measured by executing the 

algorithm and counting the running time. 

– Maybe you want to do this several times and calculate the average. 

• However, we need to remove the impact of machine capability. 

• We may count the number of basic operations instead. 

– Basic operations: declaration, assignment, arithmetic, comparisons, etc. 

Complexity The “big O” notation

Terminology of graphs Graph algorithms



Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 9 / 54

Time complexity: example

• Consider the previous example. 

• Let’s count the number of basic operations algorithm 1. 

• For the first part of algorithm 1, we have 5𝑚𝑛 + 10𝑚 + 2 basic operations. 

Decl. Assi. Arith. Comp.

(1) 𝑚 𝑚 0 0

(2) 1 𝑚 + 1 𝑚 𝑚

(3) 𝑚 𝑚 0 0

(4) 𝑚 𝑚(𝑛 + 1) 𝑚𝑛 𝑚𝑛

(5) 0 𝑚𝑛 𝑚𝑛 0

(6) 0 𝑚 0 0

int rowSum[MAX_ROW_CNT] = {0}; // (1)

for(int i = 0; i < m; i++) // (2)

{

int aRowSum = 0; // (3)

for(int j = 0; j < n; j++) // (4)

aRowSum += A[i][j]; // (5)

rowSum[i] = aRowSum; // (6)

}

// the remaining are skipped
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Time complexity: principle

• Wait… this is so tedious! And there is no need to be that precise. 

• Consider algorithm 1: 

– 5𝑚𝑛 + 10𝑚 + 2 is roughly 5𝑚𝑛 if 𝑛 is large enough. 

– The bottleneck is the first part (the second part has only one level of loop). 

– The total number of operations is roughly 5𝑚𝑛. 

• Moreover, that constant 5 does not mean a lot:

– It does not change when we get more integers (𝑚 or 𝑛 increases). 

• As we care the complexity of an algorithm the most when the instance size is 

large, we will ignore those constants and minor (non-bottleneck) parts. 

– We only focus on how the number of operations grow at the bottleneck. 
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Time complexity: example

• Let’s analyze algorithm 2. 

• The bottleneck is the two nested loops. 

• The complexity is roughly 𝑚𝑛:

– This is how the execution time would 

grow as the input size increases. 

• To formalize the above idea, let’s 

introduce the “big O” notation. 

int maxRowSum(int A[][MAX_COL_CNT], 

int m, int n)

{

int maxRowSumValue = 0;

int maxRowNumber = 0;

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

if(aRowSum > maxRowSumValue)

{

maxRowSumValue = aRowSum;

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}
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The “big O” notation

• Mathematically, let 𝑓 𝑛 ≥ 0 and 𝑔 𝑛 ≥ 0 be two functions defined for 𝑛 ∈ ℕ. 

We say 

𝒇 𝒏 ∈ 𝑶(𝒈 𝒏 )

if and only if there exists a positive number 𝑐 and a number 𝑁 such that 

𝒇 𝒏 ≤ 𝒄𝒈(𝒏)

for all 𝑛 ≥ 𝑁. 

• Intuitively, that means when 𝒏 is large enough, 𝒈(𝒏) will dominate 𝒇(𝒏). 

• If 𝑓 𝑛 is the number of operations that an algorithms takes to complete a task, 

we say the algorithm’s time complexity is 𝑔(𝑛). 

– We write 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛 ), but some people write 𝑓 𝑛 = 𝑂(𝑔 𝑛 ). 
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Examples

• Let 𝑓 𝑛 = 100𝑛2, we have 𝑔 𝑛 = 𝑛3, i.e., 𝑓 𝑛 ∈ 𝑂(𝑛3). 

– We may choose 𝑐 = 100 and 𝑁 = 1: 100𝑛2 ≤ 𝟏𝟎𝟎𝑛3 for all 𝑛 ≥ 𝟏. 

– We may choose 𝑐 = 1 and 𝑁 = 100: 100𝑛2 ≤ 𝟏𝑛3 for all 𝑛 ≥ 𝟏𝟎𝟎. 

• Let 𝑓 𝑛 = 100 𝑛 + 5𝑛, we have 𝑔 𝑛 = 𝑛: 

– We may choose 𝑐 = 6 and 𝑁 = 10: 100 𝑛 + 5𝑛 ≤ 𝟔𝑛 for all 𝑛 ≥ 𝟏𝟎. 

• Let 𝑓 𝑛 = 𝑛 log 𝑛 + 𝑛2, we have 𝑔 𝑛 = 𝑛2. 

• Let 𝑓 𝑛 = 10000, we have 𝑔 𝑛 = 1. 

• Let 𝑓 𝑛 = 0.0001𝑛2, we cannot have 𝑔 𝑛 = 𝑛:

– For any value of 𝑐, we have 0.0001𝑛2 > 𝑐𝑛 if 𝑛 > 10000𝑐. 

• Let 𝑓 𝑛 = 2𝑛, we cannot have 𝑔 𝑛 = 𝑛100. 
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Growth of functions

• In general, we may say that functions have different growth speeds. 

• If a function grows faster than another one, we say the former “dominates” the 

latter or the former is “an upper bound” of the latter. 

𝑛 5 10 50 100 1000

log 𝑛 2.32 3.32 5.64 6.64 9.97

𝑛 2.24 3.16 7.07 10.00 31.62

𝑛 5 10 50 100 1000

𝑛 log 𝑛 11.61 33.22 282.19 664.39 9965.78

𝑛2 25 100 2500 10000 1000000

2𝑛 32 1024 1.13 × 1015 1.27 × 1030 1.07 × 10301

𝑛! 120 3628800 3.04 × 1064 9.33 × 10157 Too big!!
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Growth of functions
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Growth of functions
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The “big O” notation for algorithms

• For an algorithm, we use the “big O” notation to denote its complexity. 

– If the number of basic operations is 𝑓(𝑛), we first find a valid 𝑔(𝑛) such 

that 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛 ). 

– We then say that the algorithm’s complexity is 𝑶(𝒈 𝒏 ), or just 𝒈(𝒏). 

• Note that for each 𝑓(𝑛), we have many valid 𝑔(𝑛). As these 𝑔(𝑛) are all upper 

bounds of 𝑓(𝑛), we typically use the smallest one that we may find. 
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Example 1

• Going back to the previous example, 

algorithm 2’s complexity is 𝑂(𝑚𝑛). 

– The execution time is proportional to 

the matrix size. 

– It should be fine for the matrix to 

have millions of elements. 

int maxRowSum(int A[][MAX_COL_CNT], 

int m, int n)

{

int maxRowSumValue = 0;

int maxRowNumber = 0;

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

if(aRowSum > maxRowSumValue)

{

maxRowSumValue = aRowSum;

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}
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Example 2

• Recall our examples for listing all prime numbers 

that are below 𝑛. 

• What is the most naïve algorithm’s complexity? 

– Consider isPrime() first. 

– The number of operations depends on the 

value of 𝒙! 18 is easy but 17 is hard. 

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0; 

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i < x; i++)

if(x % i == 0)

return false;

return true;

}
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Worst-case time complexity

• In many cases, the number of operations of running an algorithm depends on not 

only the number of input values but also contents of input values. 

• People talk about two kinds of time complexity: 

– Average-case time complexity: the expected number of operations 

required for a randomly drawn input. The probability distribution matters. 

– Worst-case time complexity: the maximum possible number of operations 

required for a randomly drawn input. 

• The “big O” notation typically deals with worst-case complexity. 
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Example 2

• The most naïve algorithm’s complexity:

– Checking whether 𝑥 is prime is 𝑂 𝑥 . 

– Checking all values below 𝑛 is 

𝑂 1 + 2 +⋯+ 𝑛 = 𝑂(𝑛2). 

• The most naïve algorithm’s complexity is 𝑂(𝑛2). 

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0; 

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i < x; i++)

if(x % i == 0)

return false;

return true;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms



Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 23 / 54

Example 3

• We have a better algorithm: 

• For isPrime(), the complexity is 𝑂( 𝑥). 

• For the whole algorithm, the complexity is 𝑂 σ𝑘=1
𝑛 𝑘 . How large is this? 

bool isPrime(int x)

{

for(int i = 2; i * i <= x; i++)

if(x % i == 0)

return false;

return true;

}
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Example 3: analysis

• Obviously, we have 



𝑘=1

𝑛

𝑘 = 1 +⋯ 𝑛 ≤ 𝑛 +⋯+ 𝑛 = 𝑛 𝑛 = 𝑛3/2.

• Therefore, we have 𝑶(𝒏𝟑/𝟐) for the better algorithm. 

– This is better than 𝑂(𝑛2). This algorithm is indeed theoretically better. 

– Is it the smallest upper bound? 
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Example 3: analysis

• Thanks to calculus, we have 



𝑘=1

𝑛

𝑘 ≤ න
1

𝑛+1

𝑥1/2𝑑𝑥 = ቤ
2

3
𝑥3/2

1

𝑛+1

=
2

3
𝑛 + 1 3/2 − 1 .

• If 𝑛 = 9:

Complexity The “big O” notation

Terminology of graphs Graph algorithms



Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 26 / 54

Example 3: analysis

• Thanks to calculus, we have 



𝑘=1

𝑛

𝑘 ≥ න
0

𝑛

𝑥1/2𝑑𝑥 = ቤ
2

3
𝑥3/2

0

𝑛

=
2

3
𝑛3/2.

• If 𝑛 = 9:
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Example 3: analysis

• Now we have

2

3
𝑛3/2 ≤ 

𝑘=1

𝑛

𝑘 ≤
2

3
𝑛 + 1 3/2 − 1 ,

• Therefore, 𝑂 σ𝑘=1
𝑛 𝑘 = 𝑂(𝑛3/2) should be a good estimate. 

• Now we know why studying calculus! XD 
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Example 4

• For listing all prime numbers below 𝑛, our best algorithm is: 

– The outer loop has 𝑂(𝑛) iterations. 

– For the 𝑖th iteration of the outer loop, the inner loop has 𝑂( Τ𝑛 𝑖) iterations. 

– Let’s ignore the selection statement for simplicity (“in the worst case”). 

• The overall complexity is 𝑂( Τ𝑛 2+ Τ𝑛 3 +⋯+ Τ𝑛 𝑛). How large is it? 

Given a Boolean array A of length n
Initialize all elements in A to be true // assuming prime
for i from 2 to n

if Ai is true
print i
for j from 1 to ⌊ Τ𝑛 𝑖⌋ // eliminating composite numbers

Set A[𝑖 × 𝑗] to false
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Example 4: analysis

• We have 

𝑛
1

2
+
1

3
+⋯+

1

𝑛
≤ 𝑛න

1

𝑛 1

𝑥
𝑑𝑥 = 𝑛 ln 𝑛 .

• Therefore, 𝑂 Τ𝑛 2 + Τ𝑛 3+⋯+ Τ𝑛 𝑛 = 𝑂(𝑛 ln 𝑛). 

– 𝑛 ln 𝑛 < 𝑛 𝑛, good!

• In fact, the inner loop will be initiated only if we encounter a prime number. 

• The true complexity is 

𝑂
𝑛

2
+
𝑛

3
+
𝑛

5
+
𝑛

7
+

𝑛

11
+⋯ .

– Even smaller than 𝑂(𝑛 ln 𝑛).
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Remarks

• Analyzing an algorithm’s complexity is critical in algorithm design. 

– We focus on how the number of operations grow as the input size increases. 

• We use the “big O” notation:

– We ignore tedious details, non-bottlenecks, and constants. 

– We focus on the worst case. 

• There are some algorithms whose complexity cannot be easily analyzed. 

– E.g., those constructed by recursion. 

• There are other measurements (small o, theta, big omega, small omega). 

– Expect them in your future courses! 
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Graphs/networks

• In graph theory, we talk about 

graphs/networks. 

• A graph has nodes (vertices) and edges

(arcs/links).

– A typical interpretation: Nodes are 

locations and arcs are roads.

• This graph has 9 nodes and 13 edges. 

• Two nodes are adjacent if there is an 

edge between them. 

– We say they are neighbors. 

– A node’s degree is its number of 

neighbors. 
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Directed/undirected edges

• Edges may be directed or undirected.

– For an edges from 𝑢 to 𝑣, we denote 

it as (𝑢, 𝑣) if it is directed or [𝑢, 𝑣] if 

it is undirected.

– A graph is a directed graph if its 

edges are directed.

• In this graph, we have edge [1, 6] (or 

[6, 1]), but we do not have edge [5, 6]. 

• This is an undirected graph. 
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Paths

• A path (route) from node 𝑠 to node 𝑡 is a 

set of directed edges (𝑠, 𝑣1), (𝑣1, 𝑣2), …, 

and (𝑣𝑘−1, 𝑣𝑘), and (𝑣𝑘 , 𝑡) such that 𝑠
and 𝑡 are connected. 

– 𝑠 is called the source and 𝑡 is called 

the destination of the path.

– Sometimes we write a path as 

(𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘 , 𝑡). 

– Direction matters!

• There are at least two paths from node 8 

to node 9: (8, 1, 5, 9) and (8, 7, 1, 2, 3, 9).
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Cycles

• A cycle (equivalent to circuit in some 

textbooks) is a path whose destination 

node is the source node.

– A path is a simple path if it is not a 

cycle.

– A graph is an acyclic graph if it 

contains no cycle.

• There is a cycle (1, 2, 3, 9, 6). 
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Weights

• An edge may have a weight.

– A weight may be a distance, a cost 

per unit item shipped, etc.

– A weighted graph is a graph whose 

edges are weighted. 

• In this network, we may use edge 

weights to represent distances. 

– The distance of the path (8, 1, 5, 9) is 

36. That of (8, 7, 1, 2, 3, 9) is 56. 

• A node may also have a weight. 
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Storing a graph in an adjacency matrix

• To write a program that deals with a graph, we must have a way to store the 

graph in our program. 

• Two typical data structures are adjacency matrices and adjacency lists. 

• Adjacency matrix: 

– For a graph with 𝑛 nodes, we construct an 𝑛 × 𝑛 array 𝐴.  

– If the graph is unweighted, make the array a Boolean array. Let 𝐴𝑖𝑗 = 1 if 

there is an edge 𝑖, 𝑗 (or 𝑖, 𝑗 if undirected). Let 𝐴𝑖𝑖 = 1 for either case. 

– If the graph is unweighted, make the array an integer/float/double array. Let 

𝐴𝑖𝑗 be the weight of the edge (𝑖, 𝑗) (or 𝑖, 𝑗 if undirected). Use a specially 

chosen value (−1, ∞, etc.) to indicate the nonexistence of edges. 
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Adjacency matrix: example 1

• For this unweighted graph, the adjacency 

matrix is

1 1 0 0 1 1 1 1 0
1 1 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0 1
0 0 0 1 0 0 1 0 0
1 1 1 0 1 0 0 0 1
1 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 0 1
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Adjacency matrix: example 2

• For this weighted graph, the adjacency 

matrix is

−1 7 −1 −1 8 15 23 18 −1
7 −1 11 −1 5 −1 −1 −1 −1
−1 11 −1 −1 4 −1 −1 −1 6
−1 −1 −1 −1 −1 −1 18 −1 −1
8 5 4 −1 −1 −1 −1 −1 10
15 −1 −1 −1 −1 −1 −1 −1 12
23 −1 −1 18 −1 −1 −1 9 −1
18 −1 −1 −1 −1 −1 9 −1 −1
−1 −1 6 −1 10 12 −1 −1 −1
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Adjacency matrix

• An adjacency matrix is simple and straightforward. 

• However, it is space inefficient if the graph has only few edges. 

• To remedy this, we may use an adjacency list. 

– For each node, we record its neighbors and (if weighted) distances to it 

neighbors. 

– We will introduce this until we introduce pointers. 
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Outline

• Complexity

• The “big O” notation

• Terminology of graphs

• Graph algorithms
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Graph algorithms

• As graphs can represent many things (logistic networks, power networks, social 

networks, etc.), there are many interesting issues. 

– How to find a shortest path from a node to another node? 

– How to link all nodes while minimizing the weights of selected edges? 

– How to check whether there is a cycle? 

– How to find the node with the maximum degree (number of neighbors)? 

– How to select the minimum number of nodes such that all nodes are either 

selected or adjacent to a selected node? 

• Algorithms that solve these issues on graphs are graph algorithms. 

• Below we give some examples demonstrating how to use an adjacency matrix. 
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Maximum degree

• How to find the node with the maximum degree (number of neighbors)? 

• Given an adjacency matrix for an unweighted graph: 

– For each row (which means a node), find the number of 1s. 

– Compare all rows to see which row is the winner. 

• This is exactly the algorithm of finding the row with the largest row sum! 
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Minimum number of edges

• Given an undirected unweighted graph 

𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes 

and 𝐸 is the set of edges, and a node 𝑠, 

please find the minimum numbers of 

edges one needs to move from 𝑠 to all 

other nodes. 

• In this graph, if 𝑠 = 2, the value beside 

each node is the minimum number of 

edges one needs to move from node 2 to 

that node. 
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Minimum number of edges

• Those “shortest paths” (thick lines in the 

graph) together form a spanning tree. 
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Minimum number of edges

• To find the distances from 𝑠 to all nodes, we use breadth-first search (BFS). 

• Let all nodes have weights representing their distances from 𝑠. 

– First, we label 𝑠 as 0 and all other nodes as ∞. 

– We then find the neighbors of 𝑠. Label them as 1. 

– For each node whose label is 1, find its neighbors that are currently labeled 

as ∞. Label them as 2. 

– Continue until all nodes are labeled. 

• The graph should be connected (i.e., there is a path from 𝑠 to any other node). 

Complexity The “big O” notation

Terminology of graphs Graph algorithms



Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 47 / 54

Example
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Example
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Implementation: function header

#include <iostream>

using namespace std;

const int MAX_NODE_CNT = 10;

// Input:

// - adjacent: the adjacency matrix

// - nodeCnt: number of nodes

// - source: the source node

// - dist: to store the distances from the source

// This function will find the distances from the source

// node to each node and put them in "dist"

void distFromSource(const bool adjacent[][MAX_NODE_CNT], 

int dist[], int nodeCnt, int source);
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Implementation: main function

int main()

{

int nodeCnt = 5;

bool adjacent[MAX_NODE_CNT][MAX_NODE_CNT] 

= {{1, 1, 0, 0, 1}, {1, 1, 1, 0, 0}, {0, 1, 1, 1, 0}, 

{0, 0, 1, 1, 1}, {1, 0, 0, 1, 1}};

int dist[MAX_NODE_CNT] = {0};

int source = 0;

distFromSource(adjacent, dist, nodeCnt, source);

cout << "\nThe complete result: \n";  

for(int i = 0; i < nodeCnt; i++)

cout << dist[i] << " ";

return 0;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms



Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 51 / 54

Implementation: function body

void distFromSource(const bool adjacent[][MAX_NODE_CNT], 

int dist[], int nodeCnt, int source)

{

for(int i = 0; i < nodeCnt; i++)

dist[i] = nodeCnt; // why not infinity? 

dist[source] = 0;

int curDist = 1; 

int complete = 1; 

// continue to the next page
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Implementation: function body

// continue from the previous page

while(complete < nodeCnt) { 

for(int i = 0; i < nodeCnt; i++) { // one for a level

if(dist[i] == curDist - 1) {

for(int j = 0; j < nodeCnt; j++) { // from i to j

if(adjacent[i][j] == true 

&& dist[j] == nodeCnt) {

dist[j] = curDist; 

complete++;

}          

}

}

}

curDist++;

}

}
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Complexity

• There is a three-level loop. 

– Each of the two for loops has 𝑛 iterations, where 𝑛 is the number of nodes. 

– In the worst case, the while loop has 𝑛 iterations (if in each iteration we 

label only one node). 

• Is the algorithm’s complexity 𝑂 𝑛3 ? 

• Not really! 

– The most inner loop will be initiated only if its label equals curDist – 1. 

– For each node, this will be true for exactly once. 

– In the worst case, the while loop and first for loop together give 𝑂(𝑛2). 

– The most inner loop gives another 𝑂(𝑛2). 

– The overall complexity is 𝑂 𝑛2 + 𝑛2 = 𝑂(𝑛2). 
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Remarks

• The name “breadth-first search” comes from the 

fact that “we reach all neighbors of a node 

before we reach neighbors of neighbors.”

– Please search for breadth-first search and 

“depth-first search” to learn more. 

• BFS can be done with a lower complexity. 

– 𝑂(𝑛 +𝑚), where 𝑚 is the number of edges. 

– By using a data structure “queue.” 
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