
Programming Design, Spring 2014

Homework 3
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

Submission. To submit your work, please upload the following two files to the online grading system
at http://lckung.im.ntu.edu.tw/PD/.

1. A .pdf for Problems 1 to 3.

2. Your .cpp file for Problem 4.1

Each student must submit her/his individual work. No hard copy. No late submission. The due time of
this homework is 8:00am, March 12, 2014. Please answer in either English or Chinese.

Problem 0

(0 point) Please do the following two things:

(a) Starting from the week of March 10, we may schedule individual meetings between TAs and students
so that the TAs may give suggestions to the design and style of your programs face to face. The
three possible time slots are:

• 4-5pm, Wednesday.

• 9-10am, Thursday.

• 5:30-6:30pm, Friday.

If you are not available in any of the three time slots, please indicate it here and provide the reason
(e.g., conflicting with another course). If you have preference, you may also indicate it. However,
we do not guarantee to meet your preference.

(b) Please read Sections 6.1–6.4 of the textbook.2 You probably will see some unfamiliar things. In
this case, feel free to guess their meanings or simply skip them. Sections 6.7 and 6.8 are also
helpful. If you are wondering what are “functions” in C++, you may skim through the first few
pages of Chapter 5, which will formally introduced on March 10. In any case, I strongly suggest
you to read the textbook thoroughly before you start to do this homework.

Problem 1

(10 points) Consider the following program:

int n = 10;

int num1 = 1;

int num2 = 1;

for (int i = 2; i < n; i++)

{

num1 = num1 + num2;

int temp = num2;

num2 = num1;

num1 = temp;

}

cout << num2;

1To celebrate IM Night on 3/10, bonuses are provided in Problems 1 to 3.
2The textbook is C++ How to Program: Late Objects Version by Deitel and Deitel, seventh edition.

1



(a) (2 points) For a general value of n (which may not be 10), what does this program output?

(b) (3 points) For the same algorithm, find another implementation that outputs the same thing but
runs faster.

(c) (3 points) Implement this algorithm by using an array so that after the execution of your program,
the jth element of the array contains the output of the above program with n = j for all j ∈
{3, 4, ..., 10} and 1 for j ∈ {1, 2}.3

(d) (2 points) Explain why the output with n = 50 is negative.

Problem 2

(10 points plus 10 bonus points) Consider the following pseudocode for multiplying two n× n matrices:

Algorithm for matrix multiplication

Given two n× n matrices A and B
Declare an n× n matrix C and initialize all its elements to 0
for i from 1 to n
for j from 1 to n
for k from 1 to n

Update Cij to Cij + AikBkj

Note that we ignore the implementation issue regarding array indices start from 0 in C++. In our
pseudocode, A, B, and C are just matrices. After all, no one says that a matrix must be implemented
by arrays! Also note that we avoid using statements like Cij = Cij + AikBkj , which may not be
meaningful outside the world of C++. We hope our pseudocode works under any implementations with
any programming languages!

(a) (5 points) As a function of n, how many multiplications must be performed?

(b) (5 points) Suppose both the two input matrices A and B are diagonal matrices (i.e., Aij = Bij = 0
for all i 6= j), write a pseudocode for finding C = AB that is faster than the above one. As a
function of n, how many multiplications must be performed?

(c) (10 bonus points) Suppose both the two input matrices A and B are upper triangular matrices
(i.e., Aij = Bij = 0 for all i > j), write a pseudocode for finding C = AB that is faster than the
above one. As a function of n, how many multiplications must be performed?

Problem 3

(10 bonus points) Consider the program provided on page 21 of the slides used on March 3:

int array[100] = {0};

for (int i = 0; i < 500; i++)

{

cout << array[i] << " ";

if (i % 10 == 9)

cout << "\n";

}

Try to execute it (and probably modify the total number of iterations of the loop) and get the operating
system force your program to terminate. Print your screen with the error message generated by the
operating system. Then briefly explain what run time error results in the termination.

3That is, the array should contain 1, 1, 2, 3, 5, ..., and 55.

2



Problem 4

(80 points) In this homework, we want to start our journey for building a computer game “IM Crush”,
a simpler version of the computer game “Candy Crush Saga”.4 Our game is played in a 5 × 5 board,
where its 25 squares are labeled as 

21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5

 . (1)

In other words, the left-bottom square is labeled as the 1st square, the square to its right is labeled as
the 2nd one, etc. When the game starts, candies with four different colors will randoms be placed on
the board. These four types of candies will be called candies 1, 2, 3, and 4, respectively. As an example,
one possible initial state of a game is 

1 2 3 1 4
4 2 4 2 2
3 4 2 1 2
2 4 3 1 3
3 2 2 1 2

 . (2)

As in Candy Crush, in IM Crush several candies will be removed together when they form a row or a
column of three, four, or five same-color candies. In our example, the three candies in squares 4, 9, and
14 form a column of three same-color candies and should be removed from the board. Suppose the three
new candies that will fall down are 2, 4, and 3, the next state of this game will be

1 2 3 3 4
4 2 4 4 2
3 4 2 2 2
2 4 3 1 3
3 2 2 2 2

 . (3)

For this state, we see that the four candies in squares 2, 3, 4, and 5 and the three candies in squares
13, 14, and 15 should be removed at the same time. In IM Crush, points are earned when candies are
removed. When n candies are removed at the same time, n − 2 points are earned. For example, when
we remove the three candies in (2), we earn 1 point; when we remove the seven candies in (3), we earn
5 points.

Sometimes a row and a column of three or more same-color candies intersect. In this case, all those
candies are removed together. For example, if a state is

1 2 3 3 4
4 2 4 4 2
3 4 2 2 2
2 4 2 1 3
3 2 2 2 2

 , (4)

then candies in squares 2, 3, 4, 5, 8, 13, 14, and 15 are removed at the same time. Six points are then
earned.

In the true IM Crush game, we will allow a player to exchange candies neighboring to each other. We
will leave this to the future and focus on detecting candies to remove, counting points, and replenishing
candies. Given a sequence of integers between 1 and 4, your program needs to determine the initial
state of the game (according to the first 25 integers), which candies to remove, the state after removing
candies (according to the n following integers if n candies are removed), and so on until no more candies
can be removed. During the process, you need to calculate the total points earned.

4http://www.candycrushsaga.com/.

3



Input/output formats

The input will consist of 35 lines of integers between 1 and 4. In each line, there are m + 1 integers,
where two consecutive integers are separated by a white space. It is given that m ≥ 25, but you do not
know the value of m. Let (x1, x2, ..., xm, 0) be the integers given in a line, where xi ∈ {1, 2, 3, 4} is the
ith integer. Below we describe the steps your program needs to follow:

• Step 1. The board is initialized by taking the first 25 integers and let them fall down to the board,
starting from the left-most column. In other words, the initial state is

x5 x10 x15 x20 x25

x4 x9 x14 x19 x24

x3 x8 x13 x18 x23

x2 x7 x12 x17 x22

x1 x6 x11 x16 x21

 . (5)

The total points earned is initialized to p = 0 and the index of the last used candy is set to be
k = 25.

• Step 2. Find those candies that should be removed. If no candy can be removed, this game ends.
Otherwise, some candies are removed and those corresponding squares become empty. Let n be
the number of candies removed, the total points earned are then updated to p+ n− 2. Remaining
candies should fall down to fill up empty squares until no empty space has any candy above it.

• Step 3. New candies should be taken from the sequence {xi}i=1,2,... to fill up empty squares. Given
the index of the last used candy k, if n candies were removed in Step 2, integers xk+1, xk+2, ..., xk+n

should be taken in order from the input and be placed on the board. If the m integers are all used
(i.e., 0 is read) and the board cannot be filled, the game ends immediately. Otherwise, these integers
fall down in order to fill empty squares starting from the left-most column, then the second left-most
column, ..., and lastly the right-most column. Your program then go back to Step 2.

Let’s use an example to illustrate the rule. A line of input which starts with

3 2 3 4 1 2 4 4 2 2 2 3 2 4 3 1 1 1 2 1 2 3 2 2 4 2 4 3 1 2 3 4 1 2 3 2 3 4

results in the initial state in (2). In Step 2, we find that candies in squares 4, 9, and 14 should be
removed. after removing these three candies, the board becomes

1 2 3 4
4 2 4 2
3 4 2 2
2 4 3 1 3
3 2 2 2 2

 , (6)

where squares 14, 19, and 24 are empty. We update the total points earned to 1. As there are three
empty squares, in Step 3 we read the following three integers 2, 4, and 3 and let them fall down to these
empty squares and obtain 

1 2 3 3 4
4 2 4 4 2
3 4 2 2 2
2 4 3 1 3
3 2 2 2 2

 . (7)

We then go back to Step 2 and find that seven candies should be removed. We remove them and obtain
1
4 2
3 2 3 3 4
2 4 4 4 2
3 4 3 1 3

 (8)

4



while updating the total points earned to 1 + 5 = 6. As there are seven empty squares, we do step 3 and
read the following seven integers 1, 2, 3, 4, 1, 2, and 3. They fill up the empty squares and make the
board become 

1 1 3 1 3
4 2 2 4 2
3 2 3 3 4
2 4 4 4 2
3 4 3 1 3

 . (9)

We continue the process and observe that candies in squares 7, 8, and 9 should be removed. We do so,
update the total points earned to 7, and place the next three integers 2, 3, and 4 into the board. We
obtain 

1 2 3 4 3
4 1 3 1 2
3 2 2 4 4
2 2 3 3 2
3 4 3 1 3

 (10)

and find that no candy should be removed. The game then terminates with 7 points and 38 integers
used in this game. Please note that it is possible that some integers in a line are not used when that
game ends. In this case, you need to skip the remaining integers (including the 0 at the end) and move
to the next line directly.5

Besides finding no more candies to remove, another possibility for terminating a game is when 0 (the
last integer in each line) is read. For example, suppose a line of input consists of

1 2 3 4 1 1 1 1 2 2 2 3 4 1 2 2 3 4 1 3 3 4 1 2 3 4 0

and the initial state is 
1 2 2 3 3
4 2 1 1 2
3 1 4 4 1
2 1 3 3 4
1 1 2 2 3

 . (11)

We find that the candies in squares 2, 7, and 12 can be removed and the state after removing them is
1 2 3 3
4 1 1 2
3 4 4 1
2 2 3 3 4
1 2 2 2 3

 . (12)

Note that the three candies in squares 2, 3, and 4 can be removed BUT, according to our rule, we need
to first go to Step 3 to fill up empty squares. While we need three more integers, we find that we have
only one integer (4) left. As the board cannot be filled, the game ends immediately and no more candy
should be removed.

After processing a line of input, your program should output two integers, separated with a white
space, to indicate the total points earned and number of integers used in the game. For our first example,
the output should be

7 38

with a new line character appended at the end. For our second example, the output should be

1 26

5One C++ function cin.getline(), defined in <iostream>, provides an alternative for skipping unused integers. For
an introduction to cin.getline(), see, e.g., http://www.cplusplus.com/reference/istream/istream/getline/.

5



with a new line character appended at the end. Note that when a game ends because 0 is read, the
second output should be m instead of m + 1.

More input/output examples are provided in the associated .txt files. In the input numbers are
contained in “PDSp14 hw03 input.txt”, your program should output exactly those things contained in
“PDSp14 hw03 output.txt”.

What should be in your source file

For this problem, your .cpp source file should contain C++ codes that will both read testing data and
complete the above task. You are welcome to use any technique you know. Finally, you should write
relevant comments for your codes.

Grading criteria

• 70% of your grades for this program will be based on the correctness of your output. PDGOS
will compile your program, feed testing data into your program, and check the correctness of your
outputs. Each fully correct line of output gives you 2 points.

• 30% of your grades for this program will be based on how you write your program, including the
logic and format. Please try to write a robust, efficient, and easy-to-read program.

6


