
Programming Design, Spring 2014

Suggested Solution for Homework 06

Solution provider: 謝佳吟

Problem 1:

(a) Four local variables are created in the memory before the first statement of the function

is executed. diceCount, trialCount and seed are int variables using call by value

and avg[] is an array pointer using call by pointer to store double values.

(b) The calculation of double variables may easily introduce errors. Besides, among all

the calculations, variable sum should be a double type variable only when doing the

averaging. Therefore, an explicit casting way uses less memory.

(c)

Result:

(d) The reason avg must be a pointer is that before getting the input trialCount, we do

not know the size of memory we should assign to avg. What is missing is that we do

not release the space dynamically allocated to avg.

(e) With the increase of diceCount, the frequency distributions become more centralized

as shown in the following picture.

Problem 2:

(a) 200000000*8 bytes (nearly 1.5GB) are wasted. Each round in the for loop created an

8 bytes space for a double variable which is pointed by pointer d. Then, the program

set pointer d to a new created 8 bytes space in the next round without deleting the

former created space, which cause the problem called “memory leak”.

(b)

(c) If the memory is released by deleting it before running the next round in the for loop,

only few memory will be occupied when executing the program.

Problem 3:

(a) Both implementations are intuitive. However, if the initial process will only be used

by the member array m[], it is better to choose to implement a member-function in

order to make the program clearer. Otherwise, you may choose to implement a global-

function which can be reused to initialize all the arrays in the program.

(b) a.n is create to store the size of array m of a. If a.n is modified after initializing a.m, it

might cause error in the latter part of the program once using a.n to represent the size

of a.m, such as index of a.m is out of range.

(c) a.m should be deleted before the second initializing action, if not (such as the

problem’s statement), it will cause memory leak.

(d) If the program ends without releasing the memory, it will cause memory leak.

(e)

Problem 4:

See the cpp files: z1.cpp and z2.cpp

 z1 is the makespan of the following naive schedule:

Assigning job 𝑖 to machine mod(𝑖 − 1,𝑚)+1, where mod(𝑎, 𝑏) is the

remainder of a divided by b.

 z2 is the makespan of the following better designed schedule:

First, sort the jobs by its loading in descending order, and then assign each job 𝑖

to machine which has the minimum loading at that moment.

