Programming Design, Spring 2014
Suggested Solution for Homework 06

Solution provider: #EKS

Problem 1:

(a) Four local variables are created in the memory before the first statement of the function
is executed. diceCount, trialCount and seed are int variables using call by value
and avg[] is an array pointer using call by pointer to store double values.

(b) The calculation of double variables may easily introduce errors. Besides, among all
the calculations, variable sum should be a double type variable only when doing the
averaging. Therefore, an explicit casting way uses less memory.

(©)

int main()

d

double avg[leea]={e8};
dicefvg(s, 1888, avg, 8);
int count[le]={a};

int index=8;

for(int i=8; i«<l@@a; i++)

:

A

: index=static_cast<int>((avg[i] - 1.8)/ @.5);
count[index]++;

1

for(int i=8; i<1@; i++)
:
s
; cout << count[i] << ™ ";
¥
cout << endl;
return @;
¥
Result: 4 11 98 117 27V8 2684 216 61 24 3

(d) The reason avg must be a pointer is that before getting the input trialCount, we do
not know the size of memory we should assign to avg. What is missing is that we do
not release the space dynamically allocated to avg.

(e) With the increase of diceCount, the frequency distributions become more centralized
as shown in the following picture.

IntervalslUpperBounds 1.8 1.5 2.8 . . . 4.8 4.5 5.8 5.5
(start from B.8)

diceCount= 1 A 156 175 A 165
diceCount= 3 31 123 2684 6b 9
diceCount= 5 11 78 216 61
diceCount= 7 2 4 LY 288 44
diceCount= 9 45 188 32
diceCount=11 24 162 23
diceCount=13 19 155 18
diceCount=15 13 149
diceCount=17 138
diceCount=1% 112
diceCount=21 189
diceCount=23 85
diceCount=25 72
diceCount=27 b4
diceCount=29 L6
diceCount=31 L8
diceCount=33 La
diceCount=35 35
diceCount=37 42
diceCount=39 Jb

OEOQOQEE @ W@

1
1
a
a
a

S E@EIITORITE2EREDER
DRI EEE@

[I I O R Y N i -]

RS E =D MNW &L DD
EEEEEOEEEEEE5E 3N
DRI EEE@

Problem 2:
(a) 200000000*8 bytes (nearly 1.5GB) are wasted. Each round in the for loop created an
8 bytes space for a double variable which is pointed by pointer d. Then, the program
set pointer d to a new created 8 bytes space in the next round without deleting the
former created space, which cause the problem called “memory leak”.
(b)
= TEEES = B

2% D #E EEE2E CPU DEBRAL. &2 &
B | problem2.exe 1000 HiTT =IEHT 00 2,025,592 K problem2
B GamesApplnteg... 3612 IITFE SYSTEM oo 567,852 K TODO: <File

(c) If the memory is released by deleting it before running the next round in the for loop,
only few memory will be occupied when executing the program.

EEEE | M | EREXEENS | 8 | @R | FHEN | B

1

28 PID %% EESSE U SRBEGLAT. &t

m | problem2.exe 8152 EiITT =EE 235 320K problem2

PluginService.exe 1476 EfTF SYSTEM 00 3,168 K IePlugin Service

Problem 3:

(a) Both implementations are intuitive. However, if the initial process will only be used
by the member array m[], it is better to choose to implement a member-function in
order to make the program clearer. Otherwise, you may choose to implement a global-
function which can be reused to initialize all the arrays in the program.

(b) a.nis create to store the size of array m of a. If a.n is modified after initializing a.m, it
might cause error in the latter part of the program once using a.n to represent the size
of a.m, such as index of a.m is out of range.

(c) a.m should be deleted before the second initializing action, if not (such as the
problem’s statement), it will cause memory leak.

(d) If the program ends without releasing the memory, it will cause memory leak.

(€)

bool MyVector::noNegative(){
for(int i=8; i<dimention; i++){
' if{a.m[i]«@)
§ return false;
¥

return true;

Problem 4:
See the cpp files: z1.cpp and z2.cpp
» z1is the makespan of the following naive schedule:
Assigning job i to machine mod(i — 1, m)+1, where mod(a, b) is the
remainder of a divided by b.
> z2is the makespan of the following better designed schedule:
First, sort the jobs by its loading in descending order, and then assign each job i
to machine which has the minimum loading at that moment.

