
Programming Design, Spring 2014

Homework 7
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

Submission. To submit your work, please upload the following file to the online grading system at
http://lckung.im.ntu.edu.tw/PD/.

1. Your .cpp file for Problems 1 and 2.

Each student must submit her/his individual work. No hard copy. No late submission. The due time of
this homework is 8:00am, April 21, 2014. Please answer in either English or Chinese.

Problem 0

(0 point) Please read Chapters 9 and 10 of the textbook.1 In any case, I strongly suggest you to read the
textbook thoroughly before you start to do this homework. For structures and type definitions, please
read the slides.

Problem 1

Note. The program you write for this homework will be used, modified, extended for future homework.
Please try your best to write a good program!

(100 points) Do you still remember that you were selling apples? In Homework 2, we discussed about
forecasting future demands based on historical sales data. With the forecasting system, your business
is surprisingly successful. Now you regularly get orders from some loyal customers living in the neigh-
borhood, and you are going to make decisions about the route for delivering apples to them. Again, as
an Information Management major student, you will build an information system to facilitate decision
making.

Figure 1 is an abstract map of your neighborhood. Your store is at location 1 and two customers
Eren and Mikisa live at locations 4 and 5. Each day, Eren orders 10 apples and Mikasa orders 15 apples.
These quantities are labeled as −10 and −15 at the two locations. To satisfy their demands, you supply
25 apples from your store. That is why you see a label 25 at location 1. Locations 2 and 3 are just some
intersections of roads in your neighborhood. As no one orders apples at this two locations, their labels
are 0. In summary, these labels for locations are the supply quantities (where −x means a demand of x
units).

Among locations, there are roads. Between two locations there may be two roads in two directions
(like those between locations 1 and 2) or just one road in one direction (like the one between locations 2
and 5). Of course, it is also possible for two locations to have no direct connection. On each road, there
is a label representing the number of minutes required for traveling through that road. For example,
it takes 4 minutes to move from location 1 to location 2. Your question is simple: How to move from
location 1, where your store locates, to locations 4 and 5 and then back to location 1 as fast as possible?

If you are patient enough, enumerating all possible routes is not impossible. But you are ambitious
and will not be satisfied with only two customers in such a small neighborhood. What if one day you
have ten customers distributing on a map with fifty locations and five hundred roads? It is clear that a
decision support system is required to expand your business.

Starting from this homework, we will build such a system. We will start from the following task:
Writing a class that represents a map. Such a class will be our foundation for further functionalities.

1The textbook is C++ How to Program: Late Objects Version by Deitel and Deitel, seventh edition.

1



Figure 1: A network

Basics of graphs

(100 basic points and 20 bonus points) The problem that we want to solve can be best formulated with
graph theory. Mathematically, a network (graph) has nodes (vertices) and arcs (edges/links). In general,
arcs may be directed, which means an arc between nodes u and v may be either from u to v or from v
to u. For an undirected arc between two nodes, one may travel in either direction. For an arc from u to
v, it will be expressed as (u, v). A path (route) from node s to node t is a set of arcs

(s, v1), (v1, v2), ..., (vk−1, vk), and (vk, t)

such that s and t are connected. In this case, s is called the source and t is called the destination of the
path. A cycle is a path whose destination node is the source node. A path is a simple path if it is not a
cycle. A network is an acyclic network if it contains no cycle. An arc may have weights for representing
a distance, a cost, etc. A node may also have weights for representing some attributes.

In our problem, nodes are locations and arcs are roads. For simplicity, we will only consider directed
arcs each with one weight and nodes each with one weight. All weights will be integers. For each arc,
its weight means the traveling time; for each node, its weight means the supply quantity. Our objective
is to find a cycle that passes through a subset of nodes (including our store and all customers) with
the minimized total traveling time. In this homework, we will only build a class that stores a network.
Finding the minimum-time cycle will be left to future homework.2

The class

If you already have a concrete idea about building a class for networks, you may simply skip this section.
Otherwise, you may want to take a look at the suggestions below. First, two structures, Node and Arc,
should be defined:

class Node

{

friend class Network;

private:

int id;

int weight;

};

class Arc

{

friend class Network;

2The class that we will build is used to store data. In other words, it is some kind of data structure. More data structures
will be introduced and compared in the course “Data Structures”. Finding the best route is an optimization problem. All
kinds of optimization problems for business operations will be introduced and discussed in the course “Operations Research”.

2



private:

int nodeFrom;

int nodeTo;

int weight;

};

We then define the following class:

class Network

{

private:

int n;

int m;

int nMax;

int mMax;

Node* node;

Arc* arc;

public:

Network();

Network(int nMax, int mMax);

~Network();

bool addNode(Node v);

bool addArc(Arc e);

bool removeNode(int nodeID);

bool removeArc(int arcID);

bool removeArc(int nodeFrom, int nodeTo);

};

The first two instance variables n and m are the number of nodes and arcs, respectively. The fifth and
sixth instance variables node and arc are dynamic arrays that store lists of nodes and arcs, respectively.
The reason for using dynamic arrays instead of static arrays is clear: We do not know how large the
network will be. If the default constructor is used to create the network, these two arrays are empty
(so node and arc point to NULL). On the contrary, if the constructor Network(int nMax, int mMax) is
used, the lengths of the two dynamic arrays should be set to nMax and mMax, respectively.

To add things into the initially empty network, one invokes the two functions addNode(Node v) and
addArc(Arc e) to enlarge the network. When one tries to add a node or an arc, first one should check
whether that node or arc already exist (by checking id, nodeFrom, and nodeTo). If the node/arc already
exists, the function returns false and do nothing else. If the node/arc does not exist, one should then
check whether there is still an empty space in the dynamic array. If yes, use it; if no, one should elongate
the dynamic array to, e.g., nMax * 2 or mMax * 2. In other words, every time when the array is full and
one more node/arc should be added, the array is elongated to be twice longer.

Sometimes a road may be closed or even a location may be obsoleted. Therefore, we need functions
to remove nodes and arcs. When a node is asked to be removed, the function removeNode(int nodeID)

is invoked. Again, one should first check whether the node really exists. If so, one should remove
that node AND all the arcs using it as an endpoint. To remove an arc, removeArc(int arcID) or
removeArc(int nodeFrom, int nodeTo) should be used. Again, one needs to check whether the arc
really exist. When one removes an arc, the two endpoints should remain in the network in any case.
All these functions should return false if nothing is removed. If a removal makes the dynamic array
unnecessarily long, it is your discretion whether to make it shorter by releasing some memory spaces.
Finally, we need a destructor to release all spaces dynamically allocated.

Please note that the above class definitions and descriptions are just suggestions. You do not need
to follow these suggestions. Even if you want to follow, you should make modifications when it helps.

3



Input/output formats

In this homework, you just create a class for future use. To test whether your class really works, we
design a task for you to complete: Given a sequence of nodes (v1, v2, ..., vn), determine whether there is
a path from v1 to vn that really go through all given nodes in the given order. Below we describe the
input/output formats in details.

The input will consist of several lines of English characters and integers. In each line, first there is
one or two English characters representing the task to be done for this line. Following integers then
provide information regarding that task. Two consecutive items are always separated by a white space.
The five tasks are:

• (Adding a node) When a line starts with AN followed by two integer v and w, one should try to
add a node whose id is v and weight is w into the network. The node should be added if and only
if no existing node uses v as its id.

• (Adding an arc) When a line starts with AA followed by three integer u, v, and w, one should try
to add an arc from node u to node v with weight w into the network. The arc should be added if
and only if no existing arc goes from u to v.

• (Removing a node) When a line starts with RN followed by one integer v, one should try to remove
the node whose id is v from the network. Once the node is removed, all arcs having it as an
endpoint should be removed. Nothing should happen to the network if and only if no node uses v
as its id.

• (Removing an arc) When a line starts with RA followed by two integers u and v, one should try to
remove the arc going from u to v from the network. Nothing should happen to the network if and
only if no such arc exists.

• (Is there a path?) When a line starts with P followed by a sequence of integers v1, v2, ..., and vn,
one should check whether a path (v1, v2, ..., vn) exists. If yes, one should output two integers, the
total length of this path followed by the sum of supply quantities of all nodes on this path. Of
course, a white space is used to separate the two output numbers. If no such path exist, simply
output one integer 0. In the given path, a node or an arc may be passed by more than once. In
this case, a node’s supply quantity should be counted only once but an arc’s distance should be
counted as many times as it is passed by.

Only node weights may be nonpositive. All other integers are all positive. For the first four tasks,
nothing should be output.

As an example, if “PDSp14 hw07 input.txt” is the input file, “PDSp14 hw07 output.txt” contains
what should be output by your program. From AN 1 25 to AA 5 4 2, we construct the network in Figure
1. Then four lines of AN and AA should fail as those nodes and arcs already exist. Then three P tasks
should be performed:

• For P 1 2 3 4, the output is 8 15.

• For P 1 2 4 5 3 1 2, the output is 19 0. Please note that the distance between nodes 1 and 2
are counted twice but the supply quantity at node 1 is counted only once.

• For P 4 3 2, the output is 0 because there is no arc from node 4 to node 3.

Then there are five RN and RA tasks. The first three should be executed while the last two should not.
After the removals, the network becomes the one in Figure 2. It is then unsurprising that the same set
of P tasks now all get 0 as the output.

Grading criteria

• 70 points are given based on the correctness of your output. Each correct line of output gives you
two points. The input will be organized in the following way:

4



Figure 2: A network

– In the first part, there are only AN and AA tasks. Then ten P tasks will be assigned to test
your functions for adding nodes and arcs. In this part, there will be no conflict when adding
an item.

– In the second part, there are still only AN and AA tasks. However, some of these tasks should
fail as nodes and arcs may already exist. Then ten P tasks will be assigned.

– In the third part, all tasks are possible. Then fifteen P tasks will be assigned.

• 30 points will be based on how you write your program, including the logic and format. Please try
to write a robust, efficient, and easy-to-read program.

(Bonus) Problem 2

(20 points) While the testing data for Problem 1 will be of just a moderate size, we also prepare another
set of testing data which contains a really huge network and many many addition and removal tasks.
Ten P tasks will be embedded somewhere in the input data, each gives you two points.

You do not need to write a new program for Problem 2. As long as your program is scalable and
efficient enough for a huge network, you earn the twenty bonus points. If you cannot, do not feel
disappointed. Try to look for some techniques that we have not taught you to improve your program.
Or simply wait for a few weeks until we teach you something useful.

5


