
Programming Design, Spring 2014

Homework 8
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

Submission. To submit your work, please upload the following file to the online grading system at
http://lckung.im.ntu.edu.tw/PD/.

1. Your .cpp file for Problem 1.

Each student must submit her/his individual work. No hard copy. No late submission. The due time of
this homework is 8:00am, April 28, 2014. Please answer in either English or Chinese.

Problem 0

(0 point) Please read Chapter 11 of the textbook.1 In any case, I strongly suggest you to read the
textbook thoroughly before you start to do this homework.

Problem 1

(100 points) Your apple delivery business is expanding. How to efficiently deliver apples to customers
depends on operations on the network you built last time. Therefore, in this homework we will try to
make your Network class more powerful by adding several overloaded operators into it.

One task that sometimes bothers you is to compare different networks. Recall that each network
represents a collection of arcs (roads) and nodes (intersection of roads). In some cases, you are given two
networks and you would like to see whether one includes the other. More precisely, network G1 = (V1, E1)
includes G2 = (V2, E2) if V2 ⊆ V1 and E2 ⊆ E1. As an example, the network in Figure 1 includes that
in Figure 2. When we compare two networks, arcs are treated as the same as long as their sources and
destinations are the same, even if their weights are different.

Figure 1: Network G1 Figure 2: Network G2

Other tasks that you may want to perform are addition and subtraction between networks. Suppose
we are given two networks G3 = (V,E3) and G4 = (V,E4) with the same set of nodes V , G3 + G4 =
(V,E3 ∪ E4) still has the same set of nodes. Moreover, the set of arcs E3 ∪ E4 is the union of the two
original arc sets. What if E3 and E4 both contain an arc (u, v) with different weights wuv? In this case,
the weight of arc (u, v) ∈ E3 ∪ E4 is the smaller one. Let’s take the two networks in Figures 3 and 4 as
an example. For these two networks, their sum is the network in Figure 5. Please note that while arc
(3, 2) exists in both the two networks in Figures 3 and 4, in Figure 5 its weight is 4 because 4 < 8.

1The textbook is C++ How to Program: Late Objects Version by Deitel and Deitel, seventh edition.

1



Figure 3: Network G3 Figure 4: Network G4

Figure 5: Network G3 + G4 Figure 6: Network G3 −G4

How about subtraction? Still given G3 = (V,E3) and G4 = (V,E4) with the same set of nodes V , the
network G6 = G3−G4 = (V,E3 \E4). More precisely, we have (u, v) ∈ G3−G4 if and only if (u, v) ∈ G3

and (u, v) /∈ G4, even if the two arcs have different weights. For example, the outcome of subtracting
the network in Figure 3 by that in Figure 4 is that in Figure 6.

Please note that we do not define addition and subtraction between networks with different sets of
nodes. In this case, the operation simply fails.

The class

Last time you have built a class Network. For this homework, please overload four operators: <=, >=,
+, and -. For the first two operators, the parameter is another Network and the returned type should
be bool; for the last two, the parameter is another Network and the returned type should be Network

which may be put at the left-hand side of an assignment operator. In any case, the argument should not
be modified.

Besides operator overloading, you also need to implement a copy constructor for Network. Of course,
deep copy is required.

Input/output formats

The input will consist of several lines of characters and integers. In each line, first there is one or
two characters indicating the task to be done for this line. Following integers then provide information
regarding that task. Two consecutive items are always separated by a white space. There are ten tasks
in total, where the first five are almost identical to the five in the previous homework. The only difference
is that one addition integer is used to indicate the network that the task should apply to. The ten tasks
are:

2



• (Adding a node) When a line starts with AN followed by three integers i, v, and w, one should try
to add a node whose id is v and weight is w into network Gi. The node should be added if and
only if no existing node uses v as its id in Gi.

• (Adding an arc) When a line starts with AA followed by four integers i, u, v, and w, one should try
to add an arc from node u to node v with weight w into network Gi. The arc should be added if
and only if no existing arc goes from u to v in Gi.

• (Removing a node) When a line starts with RN followed by two integers i and v, one should try to
remove the node whose id is v from network Gi. Once the node is removed, all arcs having it as
an endpoint should be removed from Gi. Nothing should happen to Gi if and only if no node uses
v as its id in Gi.

• (Removing an arc) When a line starts with RA followed by three integers i, u, and v, one should try
to remove the arc going from u to v from network Gi. Nothing should happen to Gi if and only if
no such arc exists in Gi.

• (Is there a path?) When a line starts with P followed by a sequence of integers Gi, v1, v2, ..., and
vn, one should check whether a path (v1, v2, ..., vn) exists in Gi. If yes, one should output two
integers, the total length of this path followed by the sum of supply quantities of all nodes on this
path. Of course, a white space is used to separate the two output numbers. If no such path exists
in Gi, simply output one integer 0. In the given path, a node or an arc may be passed by more
than once. In this case, a node’s supply quantity should be counted only once but an arc’s distance
should be counted as many times as it is passed by.

Note. If Gi does not exist, output 0.

• (Including another network?) When a line starts with <= followed by two integers i and j, one
should output 1 if Gi is included in Gj or 0 otherwise. If Gi or Gj does not exist or if their set of
nodes are different, output 0.

• (Included in another network?) When a line starts with >= followed by two integers i and j, one
should output 1 if Gi includes Gj or 0 otherwise. if Gi is included in Gj or 0 otherwise. If Gi or
Gj does not exist or if their set of nodes are different, output 0.

• (Adding two networks) When a line starts with + followed by two integers i and j, one should
modify Gi to Gi + Gj and leave Gj unchanged.

• (Subtracting one network from another) When a line starts with - followed by two integers i and
j, one should modify Gi to Gi −Gj and leave Gj unchanged.

• (Copying a network) When a line starts with C followed by two integers i and j where Gi exists
but Gj does not, a new network Gj should be created to be exactly the same as Gi. If Gi does not
exist or Gj already exists, do nothing.

Node weights may be nonpositive while all other integers are all positive. For tasks P, <=, and >=, some
things should be output.

As an example, if “PDSp14 hw08 input.txt” is the input file, “PDSp14 hw08 output.txt” contains
what should be output by your program. From AN 1 1 25 to AA 1 5 4 2 we build network G1 in Figure
1. We then copy G1 to create G3. After removing arcs by doing tasks from RA 3 1 3 to RA 3 5 4, we
get G3 in Figure 3. We then copy G1 to create G4, modifying G4 by doing tasks from RA 4 1 2 to
AA 4 3 2 8, and getting G4 in Figure 4. As G1 includes G3 and G1 includes G4 (even if for arc (3, 2)
the weights are different), we output two 1s; then as neither G3 nor G4 include the other, we output
two 0s. The addition and subtraction tasks then results in networks in Figures 5 and 6. For G5, the one
depicted in Figure 6, no arc goes from node 1 to node 3. Therefore, we output 0 for P 5 1 3.

Note. To make the homework easier, let’s restrict the maximum number of networks to be 10. Moreover,
they will be labeled as G1, G2, ..., and G10. If you think that helps, you may add a private member
variable into Network to record the network ID.

3



Grading criteria

• 70 points are given based on the correctness of your output. Each correct line of output gives you
two points. The input will be organized in the following way:

– In the first part, there are only AN, AA, RN, and RA tasks. Then ten P tasks will be assigned to
test your functions for adding nodes and arcs into various networks. Please note that conflicts
are possible.

– In the second part, there will be five <= or >= tasks for networks constructed in the first part.

– In the third part, there will also be + or - tasks for networks constructed in the first part.
Then ten P, <=, or >= tasks will be assigned.

– In the last part, there will be some C tasks. Then ten P, <=, or >= tasks will be assigned.

• 30 points will be based on how you write your program, including the logic and format. Please try
to write a robust, efficient, and easy-to-read program.

Note. If you do not implement operator overloading and a copy constructor, you will get very low
grades for this part.

4


