
Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 1 / 36

IM 1003: Programming Design

Functions (II)

Ling-Chieh Kung

Department of Information Management

National Taiwan University

March 17, 2014

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 2 / 36

Outline

• More about functions

• Self-defined libraries

• Randomization

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 3 / 36

Call-by-value mechanism (1/4)

• Consider the example program.

• Is the result strange?

void swap (int x, int y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl;
swap(a, b);
cout << a << " " << b << endl;

}
void swap (int x, int y)
{
int temp = x;
x = y;
y = temp;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 4 / 36

Call-by-value mechanism (2/4)

• The default way of invoking a function is the “call-
by-value” (pass-by-value) mechanism.

• When the function swap() is invoked:

– First two new variables x and y are created.

– The values of a and b are copied into x and y.

– The values of x and y are swapped.

– The function ends, x and y are destroyed, and

memory spaces are released.

– The execution goes back to the main function.
Nothing really happened…

Address Identifier Value

- a 10

- b 20

Memory

- x

- y

- x 10

- y 20

- x 20

- y 10

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 5 / 36

Call-by-value mechanism (3/4)

• The call-by-value mechanism is adopted so that:

– Functions can be written as independent entities.

– Modifying parameter values do not affect any other functions.

• Work division becomes easier and program modularity can also be enhanced.

– Otherwise one cannot predict how her program will run without knowing
how her teammates implement some functions.

• In some situations, however, we do need a callee to modify the values of some
variables defined in the caller.

– We may “call by reference” (to be introduced in the next week).

– Or we may pass an array to a function.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 6 / 36

Call-by-value mechanism (4/4)

• When an array parameter is modified in a
function, the caller also see it modified!

• Why?

• Passing an array is passing an address.

– The callee modifies whatever
contained in those addresses.

void shiftArray (int [], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
shiftArray(num, 5);
for (int i = 0; i < 5; i++)
cout << num[i] << " ";

return 0;
}
void shiftArray (int a[], int len)
{
int temp = a[0];
for (int i = 0; i < len - 1; i++)
a[i] = a[i + 1];

a[len - 1] = temp;
}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 7 / 36

Constant parameters (1/3)

• In many cases, we do not want a parameter to be modified inside a function.

• For example, consider the factorial function:

• For no reason should the parameter n be modified. You know this, but how to

prevent other programmer from doing so?

int factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a;

return ans;
}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 8 / 36

Constant parameters (2/3)

• We may declare a parameter as a constant parameter:

• Once we do so, if we assign any value to n, there will be a compilation error.

• The argument passed into a constant parameter can be a non-constant variable.

int factorial (const int n)
{
int ans = 1;
for (int a = 1; a <= n; a++)
ans *= a;

return ans;
}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 9 / 36

Constant parameters (3/3)

• For arguments whose values may
be but should not be modified in a
function, it is good to protect them.

– E.g., arrays.

void printArray (const int [5], int);
int main()
{
int num[5] = {1, 2, 3, 4, 5};
printArray(num, 5);
return 0;

}
void printArray (const int a[5], int len)
{
for (int i = 0; i < len; i++)
cout << a[i] << " ";

cout << endl;
}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 10 / 36

Function overloading (1/4)

• There is a function calculating xy:

– int pow (int base, int exp);

• Suppose we want to calculate xy where y may be fractional:

– double powExpDouble (int base, double exp);

• What if we want more?

– double powBaseDouble (double base, int exp);

– double powBothDouble (double base, double exp);

• We may need a lot of powXXX() functions, each for a different parameter set.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 11 / 36

Function overloading (2/4)

• To make programming easier, C++ provides function overloading.

• We can define many functions having the same name if their parameters are not
the same.

• So we do not need to memorize a lot of function names.

– int pow (int, int);

– double pow (int, double);

– double pow (double, int);

– double pow (double, double);

• Almost all functions in the C++ standard library are overloaded, so we can use
them conveniently.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 12 / 36

Function overloading (3/4)

• Different functions must have different function signatures.

– This allows the computer to know which function to call.

• A function signature includes

– Function name.

– Function parameters (number of parameters and their types).

• A function signature does not include return type! Why?

• When we define two functions with the same name, we say that they are
overloaded functions. They must have different parameters:

– Numbers of parameters are different.

– Or at least one pair of corresponding parameters have different types.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 13 / 36

Function overloading (4/4)

• Here are two functions:

– void print(char c,
int num);

– void print(char c);

• print() can print c for num
times. If no num is assigned,
print a single c.

void print (char c, int num)
{
for (int i = 0; i < num; i++)
cout << c;

}

void print (char c)
{
cout << c;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 14 / 36

Default arguments (1/2)

• In the previous example, it is identical to give num a default value 1.

• In general, we may assign default values for some parameters in a function.

• As an example, consider the following function that calculates a circle area:

• When we call it, we may use circleArea(5.5, 3.1416), which will assign
3.1416 to pi, or circleArea(5.5), which uses 3.14 as pi.

double circleArea (double, double = 3.14);
// ...
double circleArea (double radius, double pi)
{
return radius * radius * pi;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 15 / 36

Default arguments (2/2)

• Default arguments must be assigned before the function is called.

– In a function declaration or a function definition.

• Default arguments must be assigned just once.

• You can have as many parameters using default values as you want.

• However, parameters with default values must be put behind (to the right of)
those without a default value.

– Once we use the default value of one argument, we need to use the default
values for all the following arguments.

• How to choose between function overloading and default arguments?

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 16 / 36

Inline functions (1/2)

• When we call a function, the system needs to do a lot of works.

– Allocating memory spaces for parameters.

– Copying and passing values as arguments.

– Record where we are in the caller.

– Pass the program execution to the callee.

– After the function ends, destroy all the parameters and get back to the
calling function.

• When there are a lot of function invocations, the program will take a lot of time
doing the above stuffs. It then becomes slow.

• How to save some time?

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 17 / 36

Inline functions (2/2)

• In C++ (and some other modern languages), we may define inline functions.

• To do so, simply put the keyword inline in front of the function name in a

function prototype or header.

• When the compiler finds an inline function, it will replace the invocation by the
function statements.

– The function thus does not exist!

– Statements will be put in the caller and executed directly.

• While this saves some time, it also expands the program size.

• In most cases, programmers do not use inline functions.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 18 / 36

Outline

• More about functions

• Self-defined libraries

• Randomization

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 19 / 36

Libraries

• There are many C++ standard libraries.

– <iostream>, <climits>, <cmath>, <cctype>, <cstring>, etc.

– Many (constant) variables and functions are defined there.

– Many more.

• We may also want to define our own libraries.

– Especially when we collaborate with teammates.

– Typically, one implements a function for the others to call.

– That function can be defined in a self-defined library.

• A library includes a header file (.h) and a source file (.cpp).

– The header file contains declarations; the source file contains definitions.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 20 / 36

Example

• Consider the following program with a single function myMax():

• Let’s define a constant variable for the array length in an header file.

#include <iostream>
using namespace std;

int myMax (int [], int);
int main ()
{
int a[5] = {7, 2, 5, 8, 9};
cout << myMax (a, 5);
return 0;

}

int myMax (int a[], int len)
{
int max = a[0];
for (int i = 1; i < len; i++)
{
if (a[i] > max)
max = a[i];

}
return max;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 21 / 36

Defining variables in a library

myMax.h

main.cpp

const int LEN = 5;

#include <iostream>
#include "myMax.h"
using namespace std;

int myMax (int [], int);
int main ()
{
int a[LEN] = {7, 2, 5, 8, 9};
cout << myMax (a, LEN);
return 0;

}

int myMax (int a[], int len)
{
int max = a[0];
for (int i = 1; i < len; i++)
{
if (a[i] > max)
max = a[i];

}
return max;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 22 / 36

Including a header file

• When your main program wants to include a self-defined header file, simply
indicate its path and file name.

– #include "myMax.h"

– #include "D:/test/myMax.h"

– #include "lib/myMax.h"

– Using \ or / does not matter (on Windows).

• We still compile the main program as usual.

• Let’s also define functions in our library!

– Now we need a source file.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 23 / 36

Defining functions in a library

myMax.h myMax.cpp

main.cpp

const int LEN = 5;
int myMax (int [], int);

#include <iostream>
#include "myMax.h"
using namespace std;

int main ()
{
int a[LEN] = {7, 2, 5, 8, 9};
cout << myMax (a, LEN);
return 0;

}

int myMax (int a[], int len)
{
int max = a[0];
for (int i = 1; i < len; i++)
{
if (a[i] > max)
max = a[i];

}
return max;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 24 / 36

Including a header and a source file

• When your main program also wants to include a self-defined source file, the
include statement needs not be changed.

– #include "myMax.h"

• We add a source file myMax.cpp.

– In the source file, we implement those functions declared in the header file.

– The main file names of the header and source files can be different.

• The two source files (main.cpp and myMax.cpp) must be compiled together.

– Each environment has its own way.

– In Dev-C++, we simply create a “console project”.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 25 / 36

Defining one more function

myMax.h myMax.cpp

main.cpp

const int LEN = 5;
int myMax (int [], int);
void print (int);

#include <iostream>
#include "myMax.h"
using namespace std;

int main ()
{
int a[LEN] = {7, 2, 5, 8, 9};
print (myMax (a, LEN));
return 0;

}

int myMax (int a[], int len)
{
int max = a[0];
for (int i = 1; i < len; i++)
{
if (a[i] > max)
max = a[i];

}
return max;

}
void print (int i)
{
cout << i; // error!

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 26 / 36

Defining one more function

• Each source file contains statements to run.

• Each source file must include the libraries it
needs for its statements.

#include <iostream>
using namespace std;
int myMax (int a[], int len)
{
int max = a[0];
for (int i = 1; i < len; i++)
{
if (a[i] > max)
max = a[i];

}
return max;

}
void print (int i)
{
cout << i; // good!

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 27 / 36

The complete set of files

myMax.h myMax.cpp

main.cpp

const int LEN = 5;
int myMax (int [], int);
void print (int);

#include <iostream>
#include "myMax.h"
using namespace std;

int main ()
{
int a[LEN] = {7, 2, 5, 8, 9};
print (myMax (a, LEN));
return 0;

}

#include <iostream>
using namespace std;
int myMax (int a[], int len)
{
int max = a[0];
for (int i = 1; i < len; i++)
{
if (a[i] > max)
max = a[i];

}
return max;

}
void print (int i)
{
cout << i;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 28 / 36

Remarks

• In many cases, myMax.cpp also include
myMax.h.

– E.g., if LEN is accessed in
myMax.cpp.

• More will be discussed when we
introduces classes.

– More than two source files.

– A header file including another
header file.

main.cpp

myMax.cpp myMax.h

C++
Standard
Libraries

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 29 / 36

Outline

• More about functions

• Self-defined libraries

• Randomization

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 30 / 36

Random numbers

• In some situations, we need to generate random numbers.

– For example, a teacher may want to write a program to randomly draw one
student to answer a question.

• In C++, randomization can be done with two functions, srand() and rand().

• They are defined in <cstdlib>.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 31 / 36

rand()

• int rand();

• It “randomly” returns an integer between
0 and RAND_MAX (in <cstdlib>, typically

32767).

• Try to run it for multiple times.

– What happened?

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int rn = 0;
for (int i = 0; i < 10; i++)
{
rn = rand();
cout << rn << " ";

}

return 0;
}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 32 / 36

rand()

• rand() returns a “pseudo-random” integer.

– They just look like random numbers. But they are not really random.

– There is a formula to produce each number.

– e.g., ri = (a * ri-1 + b) mod c.

• You need to have a “random number seed”.

– r0 for this example.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 33 / 36

srand()

• void srand (unsigned int);

– A seed can be generated based on the
input number.

• The sequence is now different.

• Try to run it for multiple times.

– What happened?

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
srand(0);
int rn = 0;
for (int i = 0; i < 10; i++)
{
rn = rand();
cout << rn << " ";

}

return 0;
}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 34 / 36

srand()

• We must give srand()different arguments.

• In many cases, we use time(0) to be the argument of srand().

– The function time(0), defined in <ctime>, returns the number of seconds
that have past since 0:0:0, Jan, 1st, 1970.

– The argument 0 is hard to be explained now.

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 35 / 36

srand() and time()

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main()
{
int rn = 0;
for (int i = 0; i < 10; i++)
{
srand(time(0)); // bad
rn = rand();
cout << rn << " ";

}
return 0;

}

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main()
{
srand(time(0)); // good
int rn = 0;
for (int i = 0; i < 10; i++)
{
rn = rand();
cout << rn << " ";

}
return 0;

}

More about functions Self-defined libraries Randomization

Ling-Chieh Kung (NTU IM)Programming Design, Spring 2014 – Functions (II) 36 / 36

Random numbers in a range

• If you want to produce random numbers
in a specific range, use %.

• What is the range in this program?

• How about this?

• More powerful random number
generators are provided in <random>

(if your compiler is new enough).

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main()
{
srand(time(0));
int rn = 0;
for (int i = 0; i < 10; i++)
{
rn = ((rand() % 10)) + 100;
cout << rn << " ";

}
return 0;

}

rn = (static_cast<double>(rand() % 501)) / 100;

More about functions Self-defined libraries Randomization

