Common Mathematical Notations and Operations

Ling-Chieh Kung*

October 12, 2014

Note. Throughout this handout, we use x, y, and z to denote real numbers or vectors, n and m to denote integers, and i, j, and k to denote indices. R codes are written in font style like this. If you would like to add anything into the list, please let me know. Thank you.

1 Mathematical notations

- \mathbb{N} is the set of all natural numbers (positive integers); \mathbb{Z} is the set of all integers; \mathbb{Q} is the set of all rational numbers (which can be written as the ratio of two integers); \mathbb{R} is the set of all real numbers.
- () is a pair of parentheses, [] is a pair of square brackets, and $\}$ is a pair of curly brackets.
- $[x, y]$ is the (closed) interval containing all real numbers between x and y, including x and y. We write $z \in[x, y]$ if $x \leq z \leq y$.
- (x, y) is the open interval containing all real numbers between x and y, excluding x and y. We write $z \in(x, y)$ if $x<z<y$.
- $[x, y)$ is the right open interval containing all real numbers between x and y, including x but excluding y. We write $z \in[x, y)$ if $x \leq z<y$.
- $(x, y]$ is the left open interval containing all real numbers between x and y, including y but excluding x. We write $z \in(x, y]$ if $x<z \leq y$.
- \equiv is used for defining a notation. E.g., $\mu \equiv \frac{\sum_{i=1}^{N} x_{i}}{N}$ is the definition of population mean.
- A scalar is a single number; a vector is a sequence of numbers. Sometimes we write $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to represent a vector of length n, where x_{i} is the i th element/number in vector x.

[^0]
2 Mathematics operations

- $x+y$, read as " x plus y," means adding x and y to find their summation. E.g., $5+7$ is 12 . In R, do this by typing $5+7$.
- $x-y$, read as " x minus y," means subtracting y from x to find their difference. E.g., $5-7$ is -2 . In R, do this by typing $5-7$.
- $x y$ or $x \times y$, read as " $x y$ " or " x times y," means multiplying x by y to find their product. E.g., $5 \times 7=35$. In R, do this by typing $5 * 7$.
- $\frac{x}{y}$, read as " x divided by y " or " x over y," means dividing x by y to find the ratio of x to y. E.g., $\frac{6}{2}=3$. In R, do this by typing $6 / 2$.
- $\bmod (n, m)$ is the operation for dividing n by m to find the remainder of this division. This is read as " x modulus y " by some people. E.g., $\bmod (10,3)=1$. In R , do this by typing $10 \% \% 3$.
- x^{2}, read as " x square," means multiplying x twice to find its square. E.g., $3^{2}=9$. In R, do this by typing 3 - 2 .
- x^{3}, read as " x cube," means multiplying x for three times to find its cube. E.g., $3^{3}=27$. In R, do this by typing 3 - 3 .
- x^{n}, read as " x to the power of n," means multiplying x for n times to find its nth power. E.g., 3^{n} is 243 if $n=5$. In R, do this by typing $3{ }^{\text {n }} \mathrm{n}$.
- \sqrt{x}, read as "square root of x," means finding a number y such that $y^{2}=x$. E.g., $\sqrt{9}=3$. In R, do this by typing sqrt (9).
- x_{i}, read just as " $x i$," means finding the i th element of vector x. E.g., if $x=$ $(10,11,12), x_{2}=11$. In R, do this by typing $\mathrm{x}<-10: 12$ and then $\mathrm{x}[2]$.
- $\sum_{i=1}^{n} x_{i}$, read as "sum from x_{1} to x_{n}," means to calculate $x_{1}+x_{2}+\cdots+x_{n}$. E.g., if $x=(10,11,12), \sum_{i=1}^{n} x_{i}=33$. In R, do this by typing $\mathrm{x}<-10: 12$ and then sum (x). ${ }^{1}$
- More generally, $\sum_{i=j}^{k} x_{i}$, read as "sum from x_{j} to x_{k}," means to calculate $x_{j}+x_{j+1}+$ $\cdots+x_{k}$ for some numbers $j \geq 1$ and $k \leq n$. E.g., if $x=(10,11,12), \sum_{i=2}^{3} x_{i}=23$. In R, do this by typing $x<-10: 12$ and then $\operatorname{sum}(x[2: 3]) .^{2}$
- $\lfloor x\rfloor$, read as "floor of x,", means rounding down x to the closest integer no greater than x. E.g., $\lfloor 1.9\rfloor=1$. In R, do this by typing floor(1.9).
- $\lceil x\rceil$, read as "ceiling of x," means rounding up x to the closest integer no less than x. E.g., $\lceil 1.1\rceil=2$. In R , do this by typing ceiling(1.1).

[^1]- $|x|$, read as "the absolute value of x," means finding the distance between x and 0 . E.g., $|-5|=5$. In R, do this by typing abs (-5).
- n !, read as "the factorial of n," means finding the product of all positive integers no greater than n. E.g., $3!=3 \times 2 \times 1=6$. In R, do this by typing factorial (3).
- $\max \{x, y\}$ or $\max (x, y)$, read as "the maximum of x and y," means finding the larger one between x and y. E.g., $\max \{1,4\}=4$. In R , do this by typing $\max (\mathrm{x}, \mathrm{y})$. When x is a vector, $\max _{i=1, \ldots, n}\left\{x_{i}\right\}$ is the largest element in x. In R , do this by typing $\max (\mathrm{x})$.
- $\min \{x, y\}$ or $\min (x, y)$, read as "the minimum of x and y," means finding the smaller one between x and y. E.g., $\min \{1,4\}=1$. In R, do this by typing $\min (x, y)$. When x is a vector, $\min _{i=1, \ldots, n}\left\{x_{i}\right\}$ is the smallest element in x. In R , do this by typing $\min (x)$.

3 Common notations in statistics

- N is the population size and n is the sample size.
- $\mu \equiv \frac{\sum_{i=1}^{N} x_{i}}{N}$ (read as "miu") is the population mean and $\bar{x} \equiv \frac{\sum_{i=1}^{n} x_{i}}{n}$ (read as "xbar") is the sample mean.
- $\sigma^{2} \equiv \frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}\left(\right.$ read as "sigma square") is the population variance and $s^{2} \equiv$ $\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$ (read as "s square") is the sample variance.
- $\sigma \equiv \sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}}$ is the population standard deviation and $s \equiv \sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$ is the sample standard deviation.

[^0]: *Department of Information Management, National Taiwan University; lckung@ntu.edu.tw.

[^1]: ${ }^{1}$ Here we have assumed that x has n elements.
 ${ }^{2}$ When we have enough spaces, we write $\sum_{i=j}^{k} x_{i}$.

