Common Mathematical Notations and Operations

Ling-Chieh Kung*

October 12, 2014

Note. Throughout this handout, we use x, y, and z to denote real numbers or vectors, n and m to denote integers, and i, j, and k to denote indices. R codes are written in font style **like this**. If you would like to add anything into the list, please let me know. Thank you.

1 Mathematical notations

- N is the set of all natural numbers (positive integers); Z is the set of all integers; Q is the set of all rational numbers (which can be written as the ratio of two integers); R is the set of all real numbers.
- () is a pair of parentheses, [] is a pair of square brackets, and {} is a pair of curly brackets.
- [x, y] is the (closed) interval containing all real numbers between x and y, including x and y. We write $z \in [x, y]$ if $x \le z \le y$.
- (x, y) is the open interval containing all real numbers between x and y, excluding x and y. We write $z \in (x, y)$ if x < z < y.
- [x, y) is the right open interval containing all real numbers between x and y, including x but excluding y. We write $z \in [x, y)$ if $x \le z < y$.
- (x, y] is the left open interval containing all real numbers between x and y, including y but excluding x. We write $z \in (x, y]$ if $x < z \le y$.
- \equiv is used for defining a notation. E.g., $\mu \equiv \frac{\sum_{i=1}^{N} x_i}{N}$ is the definition of population mean.
- A scalar is a single number; a vector is a sequence of numbers. Sometimes we write $x = (x_1, x_2, ..., x_n)$ to represent a vector of length n, where x_i is the *i*th element/number in vector x.

^{*}Department of Information Management, National Taiwan University; lckung@ntu.edu.tw.

2 Mathematics operations

- x + y, read as "x plus y," means adding x and y to find their summation. E.g., 5 + 7 is 12. In R, do this by typing 5 + 7.
- x y, read as "x minus y," means subtracting y from x to find their difference. E.g., 5 - 7 is -2. In R, do this by typing 5 - 7.
- xy or x × y, read as "xy" or "x times y," means multiplying x by y to find their product. E.g., 5 × 7 = 35. In R, do this by typing 5 * 7.
- $\frac{x}{y}$, read as "x divided by y" or "x over y," means dividing x by y to find the ratio of x to y. E.g., $\frac{6}{2} = 3$. In R, do this by typing 6 / 2.
- mod(n, m) is the operation for dividing n by m to find the remainder of this division. This is read as "x modulus y" by some people. E.g., mod(10,3) = 1. In R, do this by typing 10 %% 3.
- x^2 , read as "x square," means multiplying x twice to find its square. E.g., $3^2 = 9$. In R, do this by typing 3 ^ 2.
- x^3 , read as "x cube," means multiplying x for three times to find its cube. E.g., $3^3 = 27$. In R, do this by typing 3 $\hat{}$ 3.
- xⁿ, read as "x to the power of n," means multiplying x for n times to find its nth power. E.g., 3ⁿ is 243 if n = 5. In R, do this by typing 3 ^ n.
- \sqrt{x} , read as "square root of x," means finding a number y such that $y^2 = x$. E.g., $\sqrt{9} = 3$. In R, do this by typing sqrt(9).
- x_i , read just as "x i," means finding the *i*th element of vector x. E.g., if $x = (10, 11, 12), x_2 = 11$. In R, do this by typing x < -10:12 and then x[2].
- $\sum_{i=1}^{n} x_i$, read as "sum from x_1 to x_n ," means to calculate $x_1 + x_2 + \cdots + x_n$. E.g., if x = (10, 11, 12), $\sum_{i=1}^{n} x_i = 33$. In R, do this by typing $\mathbf{x} < -10:12$ and then $\operatorname{sum}(\mathbf{x})$.¹
- More generally, $\sum_{i=j}^{k} x_i$, read as "sum from x_j to x_k ," means to calculate $x_j + x_{j+1} + \cdots + x_k$ for some numbers $j \ge 1$ and $k \le n$. E.g., if x = (10, 11, 12), $\sum_{i=2}^{3} x_i = 23$. In R, do this by typing x < -10:12 and then sum(x[2:3]).²
- [x], read as "floor of x,", means rounding down x to the closest integer no greater than x. E.g., [1.9] = 1. In R, do this by typing floor(1.9).
- [x], read as "ceiling of x," means rounding up x to the closest integer no less than x. E.g., [1.1] = 2. In R, do this by typing ceiling(1.1).

²When we have enough spaces, we write $\sum_{i=j}^{n} x_i$.

¹Here we have assumed that x has n elements.

- |x|, read as "the absolute value of x," means finding the distance between x and 0.
 E.g., |-5| = 5. In R, do this by typing abs(-5).
- n!, read as "the factorial of n," means finding the product of all positive integers no greater than n. E.g., $3! = 3 \times 2 \times 1 = 6$. In R, do this by typing factorial(3).
- max{x, y} or max(x, y), read as "the maximum of x and y," means finding the larger one between x and y. E.g., max{1,4} = 4. In R, do this by typing max(x, y). When x is a vector, max {x_i} is the largest element in x. In R, do this by typing max(x).
- min{x, y} or min(x, y), read as "the minimum of x and y," means finding the smaller one between x and y. E.g., min{1,4} = 1. In R, do this by typing min(x, y). When x is a vector, min_{i=1,...,n} {x_i} is the smallest element in x. In R, do this by typing min(x).

3 Common notations in statistics

- N is the population size and n is the sample size.
- $\mu \equiv \frac{\sum_{i=1}^{N} x_i}{N}$ (read as "miu") is the population mean and $\bar{x} \equiv \frac{\sum_{i=1}^{n} x_i}{n}$ (read as "x-bar") is the sample mean.
- $\sigma^2 \equiv \frac{\sum_{i=1}^{N} (x_i \mu)^2}{N}$ (read as "sigma square") is the population variance and $s^2 \equiv \frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n-1}$ (read as "s square") is the sample variance.
- $\sigma \equiv \sqrt{\frac{\sum_{i=1}^{N} (x_i \mu)^2}{N}}$ is the population standard deviation and $s \equiv \sqrt{\frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n-1}}$ is the sample standard deviation.