STATISTICS AND DATA ANALYSIS

TA Session: Probability Practice
October 6, 2014

Practice 1

A fare dice is rolled and a fair coin is tossed. Find the probability that the dice shows an odd number and the coin shows a head.

Practice 2

Suppose A and B are independent events, B and C are mutually exclusive, and A and C are independent events. Moreover, we have $\operatorname{Pr}(A)=0.4, \operatorname{Pr}(B)=0.9$ and $\operatorname{Pr}(C)=0.1$. Find the following probabilities:
a) $\operatorname{Pr}(A \cap B)$
b) $\operatorname{Pr}(B \cap C)$
c) $\operatorname{Pr}\left(A \cap B \cap C^{\prime}\right)$
d) $\operatorname{Pr}((A \cap C) \cup B)$
e) $\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$

Practice 3

You decide you're only going to buy a lottery ticket if your expected winning is larger than the ticket price. Suppose a ticket costs $\$ 10$:

With probability 0.01 , you win $\$ 1000$.
With probability 0.05 , you win $\$ 100$.
With probability 0.1 , you win $\$ 10$.
Should you buy a ticket for this lottery? Why?

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7
$$

a) List all the possible outcomes of X.
b) What are the probabilities of all the outcomes of X ? (You may use R as a calculator.)

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7
$$

c) Using the R code mentioned in the video, find the expected value of X.
d) Using the R code mentioned in the video, find the variance and the standard deviation of X.

Practice 5

Consider the wholesale data set:
a) Extract sales data collected from channel 1 and region 1, with 4 columns: Channel, Region, Fresh and Milk.

Hint:

Use "which" and "data.frame" function.

Practice 5

b) For sales data collected from channel 1 and region 1, calculate the means, medians, and sample variances for milk sales.

Hint:

Use "mean", "median" and "var" function.
You can also use "summary" function to see what happened.

Practice 5

c) For sales data collected from channel 1 and region 1, draw a histogram for milk sales data with the default number of classes and class intervals.

Hint:

Use "hist" function.
d) For each of the six channel-region combination, calculate the sample correlation coefficient between fresh food sales and milk sales.

Practice 5

e) Draw scatter plots for the channel-region combinations with the highest and lowest correlation coefficients.

Hint:
Use "plot" function.

