STATISTICS AND DATA ANALYSIS

TA Session: Probability Practice
October 6, 2014

Practice 1

A fare dice is rolled and a fair coin is tossed. Find the probability that the dice shows an odd number and the coin shows a head.

- The probability of getting an odd number after rolling a dice is $3 / 6$.
- The probability of showing a head after tossing a coin is $1 / 2$.
- Because they are independent events, all we need to do is to time the two probabilities together:

$$
3 / 6 * 1 / 2=1 / 4
$$

Practice 2

Suppose A and B are independent events, B and C are mutually exclusive, and A and C are independent events. Moreover, we have $\operatorname{Pr}(A)=0.4, \operatorname{Pr}(B)=0.9$ and $\operatorname{Pr}(C)=0.1$. Find the following probabilities:
a) $\operatorname{Pr}(A \cap B)$
b) $\operatorname{Pr}(B \cap C)$
c) $\operatorname{Pr}\left(A \cap B \cap C^{\prime}\right)$
d) $\operatorname{Pr}((A \cap C) \cup B)$
e) $\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$

Practice 2

Suppose A and B are independent events, B and C are mutually exclusive, and A and C are independent events. Moreover, we have $\operatorname{Pr}(A)=0.4, \operatorname{Pr}(B)=0.9$ and $\operatorname{Pr}(C)=0.1$. Find the following probabilities:
a) $\operatorname{Pr}(A \cap B)$
b) $\operatorname{Pr}(B \cap C)$
c) $\operatorname{Pr}\left(A \cap B \cap C^{\prime}\right)$
d) $\operatorname{Pr}((A \cap C) \cup B)$
e) $\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$

Solution:

Because A and B are independent events.
$\operatorname{Pr}(\boldsymbol{A} \cap \boldsymbol{B})=\operatorname{Pr}(\boldsymbol{A}) \times \operatorname{Pr}(\boldsymbol{B})=0.36$

Practice 2

Suppose A and B are independent events, B and C are mutually exclusive, and A and C are independent events. Moreover, we have $\operatorname{Pr}(A)=0.4, \operatorname{Pr}(B)=0.9$ and $\operatorname{Pr}(C)=0.1$. Find the following probabilities:
a) $\operatorname{Pr}(A \cap B)$
b) $\operatorname{Pr}(B \cap C)$
c) $\operatorname{Pr}\left(A \cap B \cap C^{\prime}\right)$
d) $\operatorname{Pr}((A \cap C) \cup B)$
e) $\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$

Solution:

Because B and C are mutually exclusive, They have no intersection!
$\operatorname{Pr}(B \cap C)=0$

Practice 2

Suppose A and B are independent events, B and C are mutually exclusive, and A and C are independent events. Moreover, we have $\operatorname{Pr}(A)=0.4, \operatorname{Pr}(B)=0.9$ and $\operatorname{Pr}(C)=0.1$. Find the following probabilities:
a) $\operatorname{Pr}(A \cap B)$
b) $\operatorname{Pr}(B \cap C)$
c) $\operatorname{Pr}\left(\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C}^{\prime}\right)$
d) $\operatorname{Pr}((A \cap C) \cup B)$
e) $\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$

Solution:

$\operatorname{Pr}\left(A \cap B \cap C^{\prime}\right)$
$=\operatorname{Pr}(A \cap B \cap B)$
$=\operatorname{Pr}(A \cap B)$
$=0.36$

Practice 2

Suppose A and B are independent events, B and C are mutually exclusive, and A and C are independent events. Moreover, we have $\operatorname{Pr}(A)=0.4, \operatorname{Pr}(B)=0.9$ and $\operatorname{Pr}(C)=0.1$. Find the following probabilities:
a) $\operatorname{Pr}(A \cap B)$
b) $\operatorname{Pr}(B \cap C)$
c) $\operatorname{Pr}\left(A \cap B \cap C^{\prime}\right)$
d) $\operatorname{Pr}((A \cap C) \cup B)$
e) $\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$

Solution:

$\operatorname{Pr}((A \cap C) \cup B)$
$=\operatorname{Pr}(A \cap C)+\operatorname{Pr}(B)$
$=0.94$

Practice 2

Suppose A and B are independent events, B and C are mutually exclusive, and A and C are independent events. Moreover, we have $\operatorname{Pr}(A)=0.4, \operatorname{Pr}(B)=0.9$ and $\operatorname{Pr}(C)=0.1$. Find the following probabilities:
a) $\operatorname{Pr}(A \cap B)$
b) $\operatorname{Pr}(B \cap C)$
c) $\operatorname{Pr}\left(A \cap B \cap C^{\prime}\right)$
d) $\operatorname{Pr}((A \cap C) \cup B)$
e) $\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$

Solution:

$\operatorname{Pr}\left(\left(A \cap C^{\prime}\right) \cup B\right)$
$=\operatorname{Pr}((A \cap B) \cup B)$
$=\operatorname{Pr}(B)$
$=0.9$

Practice 3

You decide you're only going to buy a lottery ticket if your expected winning is larger than the ticket price. Suppose a ticket costs $\$ 10$:

With probability 0.01 , you win $\$ 1000$.
With probability 0.05 , you win $\$ 100$.
With probability 0.1 , you win $\$ 10$.
Should you buy a ticket for this lottery? Why?

Practice 3

- Four kinds of possible outcomes:

1) Your win $\$ 1000$ with probability 0.01 .
2) You win $\$ 100$ with probability 0.05 .
3) You win $\$ 10$ with probability 0.1 .
4) You win nothing with probability 1-0.01-0.05-0.1 $=0.84$.

- The expected value of winning the lottery:

$$
1000 \times 0.01+100 \times 0.05+10 \times 0.1+0 \times 0.84=10+5+1=16(\$)
$$

- $16>10$. We should buy the ticket.

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7
$$

a) List all the possible outcomes of X.
b) What are the probabilities of all the outcomes of X ? (You may use R as a calculator.)

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7
$$

a) List all the possible outcomes of X.

\boldsymbol{X}	Combinations
$X=0$	(TTT)
$X=1$	(HTT), (THT), (TTH)
$X=2$	(HHT), (HTH), (THH)
$X=3$	(HHH)

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7 .
$$

b) What are the probabilities of all the outcomes of X ? (You may use R as a calculator.)

\boldsymbol{X}	Combinations	Probabilities of \boldsymbol{X}
$X=0$	(TTT)	$\mathbf{0 . 7 \times 0 . 7 \times 0 . 7 = 0 . 3 4 3}$
$X=1$	$(\mathrm{HTT}),(\mathrm{THT}),(\mathrm{TTH})$	$\mathbf{0 . 3 \times 0 . 7 \times 0 . 7}+\mathbf{0 . 7 \times 0 . 3 \times 0 . 7}+\mathbf{0 . 7 \times 0 . 7 \times 0 . 3 = 0 . 4 4 1}$
$X=2$	$(\mathrm{HHT}),(\mathrm{HTH}),(\mathrm{THH})$	$\mathbf{0 . 3 \times 0 . 3 \times 0 . 7}+\mathbf{0 . 3 \times 0 . 7 \times 0 . 3 + \mathbf { 0 . 7 } \times 0 . 3 \times \mathbf { 0 } . 3 = 0 . 1 8 9}$
$X=3$	(HHH)	$\mathbf{0 . 3 \times 0 . 3 \times 0 . 3}=0.027$

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7
$$

c) Using the R code mentioned in the video, find the expected value of X.
d) Using the R code mentioned in the video, find the variance and the standard deviation of X. The variance of X is
The expected value (or mean) of X is

$$
\mu \equiv \mathbb{E}[X]=\sum_{i \in S} x_{i} \operatorname{Pr}\left(x_{i}\right)
$$

$$
\begin{aligned}
& \qquad \sigma^{2} \equiv \operatorname{Var}(X) \equiv \mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) \\
& \text { The standard deviation of } X \text { is } \sigma \equiv \sqrt{\sigma^{2}} \text {. }
\end{aligned}
$$

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7 .
$$

c) Using the R code mentioned in the video, find the expected value of X.

\boldsymbol{X}	$\boldsymbol{P r}(\boldsymbol{X})$
$X=0$	0.343
$X=1$	0.441
$X=2$	0.189
$X=3$	0.027

The expected value (or mean) of X is

R code:

$>x<-0: 3$

$$
\mu \equiv \mathbb{E}[X]=\sum_{i \in S} x_{i} \operatorname{Pr}\left(x_{i}\right) .
$$

$>\mathrm{p}<-\mathrm{c}(0.343,0.441,0.189,0.027)$
$>\mathrm{m}<-\operatorname{sum}(\mathrm{x} * \mathrm{p})$

Practice 4

Define $X=$ number of heads after $\mathbf{3}$ flips of an unfair coin with the following distribution:

$$
\operatorname{Pr}(X=\text { Head })=0.3 \text { and } \operatorname{Pr}(X=\text { Tail })=0.7
$$

d) Using the R code mentioned in the video, find the variance and the standard deviation of X.

The variance of X is

R code:

$$
\begin{aligned}
& >\mathrm{v}<-\operatorname{sum}\left((\mathrm{x}-\mathrm{m})^{\wedge} 2^{*} \mathrm{p}\right) \\
& >\mathrm{s}<-\operatorname{sqrt}(\mathrm{v})
\end{aligned}
$$

$$
\sigma^{2} \equiv \operatorname{Var}(X) \equiv \mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) .
$$

The standard deviation of X is $\sigma \equiv \sqrt{\sigma^{2}}$.

Practice 5

Consider the wholesale data set:

Load the data set "SDA-Fa14 data wholesale.txt" by executing this Statement.

W <- read.table("SDA-Fa14_data_wholesale.txt", header=TRUE)

Practice 5

a) Extract sales data collected from channel 1 and region 1, with 4 columns: Channel, Region, Fresh and Milk.

Hint:

Use "which" and "data.frame" function.

R code:

index <- which(W\$Channel == 1 \& W\$Region == 1)
ws $<-$ W[index,]
ews <- data.frame(Channel = ws\$Channel,
Region = ws\$Region,
Fresh = ws\$Fresh,
Milk = ws\$Milk)

Practice 5

b) For sales data collected from channel 1 and region 1, calculate the means, medians, and sample variances for milk sales.

Hint:

Use "mean", "median" and "var" function.
You can also use "summary" function to see what happened.

R code:

mean(ews $\$$ Milk)
median(ews\$Milk)
$\operatorname{var}($ ews $\$$ Milk $)$
summary (ews\$Milk)

Practice 5

c) For sales data collected from channel 1 and region 1, draw a histogram for milk sales data with the default number of classes and class intervals.

Hint:

Use "hist" function.

R code:
hist(ews\$Milk)

Practice 5

d) For each of the six channel-region combination, calculate the sample correlation coefficient between fresh food sales and milk sales.

R code:
C1R1 <- W[which(W\$Channel==1 \& W\$Region==1),]
C1R2 <- W[which(W\$Channel==1 \& WWRegion==2),]
C1R3 <- W[which(W\$Channel==1 \& W\$Region==3),]
C2R1 <- W[which(W\$Channel==2 \& W\$Region==1),]
C2R2 <- W[which(W\$Channel==2 \& WWRegion==2),]
C2R3<-W[which(W\$Channel==2 \& W\$Region==3),]

R code:

cor(C1R1\$Fresh, C1R1\$Milk)	$\#-0.03010351$
cor(C1R2\$Fresh, C1R2\$Milk)	$\# \mathbf{0 . 5 3 8 0 0 9 5}$
$\operatorname{cor}(\mathrm{C} 1$ R3\$Fresh, C1R3\$Milk)	$\# 0.2912192$
$\operatorname{cor}(\mathrm{C} 2 \mathrm{R} 1 \$ F r e s h$, C2R1\$Milk)	$\# 0.1291734$
$\operatorname{cor}(\mathrm{C} 2$ R2\$Fresh, C2R2\$Milk)	$\#-\mathbf{- 0 . 2 0 5 9 9 8 7}$
$\operatorname{cor}(\mathrm{C} 2 \mathrm{R} 3 \$$ Fresh, C2R3\$Milk)	$\# 0.2761697$

$\operatorname{cor}(\mathrm{C} 1 \mathrm{R} 2 \$$ Fresh, C1R2\$Milk) \# 0.5380095
$\operatorname{cor}($ C1R3\$Fresh, C1R3\$Milk) \# 0.2912192
cor(C2R1\$Fresh, C2R1\$Milk) \# 0.1291734
cor(C2R2\$Fresh, C2R2\$Milk) \# -0.2059987
cor(C2R3\$Fresh, C2R3\$Milk) \# 0.2761697

Practice 5

e) Draw scatter plots for the channel-region combinations with the highest and lowest correlation coefficients.

Hint:

Use "plot" function.
R code:
plot(C1R2\$Fresh, C1R2\$Milk) \# Pay attention to the outlier! plot(C2R2\$Fresh, C2R2\$Milk)

