Statistics and Data Analysis Homework 3

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

1. Consider a random variable X with the following probability distribution:

x	1	2	3	4
$\Pr(X = x)$) 0.5	0.25	0.125	0.125

- (a) Draw a bar chart to illustrate the probability distribution.
- (b) What is the expected value of X, $\mathbb{E}[X]$?
- (c) What is the variance of X, Var(X)?
- (d) What is the standard deviation of X?
- 2. Consider a random variable X that is uniformly distributed between 0 and 10.

Note. We will write $X \sim \text{Uni}(a, b)$ if X is uniformly distributed between a and b.

- (a) Find $\Pr(X=3)$.
- (b) Find $\Pr(X \ge 20)$.
- (c) Find $\Pr(X \ge 6)$.
- (d) Find $\Pr(2 \le X \le 7)$.
- (e) Find the pdf of X.
- 3. By using R, one may easily generate random numbers following a given distribution, which is equivalent to sampling from a population that follows that distribution. In particular, we may use the function sample(x, size) to randomly draw a sample of size size from the population x without replacement.
 - (a) Try x <- seq(1, 10, 1) and then sample(x, 10) for a few times. What do you get?
 - (b) Now try sample(x, 10, replace = TRUE) for a few times. Is there anything different?
 - (c) How to randomly draw one student in our class to win a prize? How to randomly draw three?
- 4. Let X be the outcome of rolling a fair dice. We know it follows a discrete uniform distribution between 1 and 6. Let's roll this dice for 10000 times and count the frequencies:

```
trial <- 10000
x <- rep(0, trial)
for(i in 1:trial)
{
    x[i] <- sample(1:6, 1)
}
table(x)</pre>
```

Does the outcome look uniform?

- 5. Let X_1, X_2 , and X_3 be the outcome of rolling three fair dices. What is the probability distribution of $Y = X_1 + X_2 + X_3$?
 - (a) What are the possible values of Y?
 - (b) Let's roll these dices for 10000 times and count the frequencies:

```
trial <- 10000
x <- rep(0, trial)
for(i in 1:trial)
{
    x[i] <- sum(sample(1:6, 3, replace = TRUE))
}
oc <- as.data.frame(table(x))
barplot(oc$Freq / trial, names.arg = oc$x)</pre>
```

- 6. We have used the R function pnorm(q, mean, sd) to calculate the *left-tail probability* of normal distributions. Let's do some more practices.
 - (a) If $X \sim ND(10, 2)$, find $Pr(X \le 7)$.
 - (b) If $X \sim ND(10, 2)$, find $Pr(X \ge 13)$.
 - (c) If $X \sim ND(200, 50)$, find $Pr(120 \le X \le 170)$.
 - (d) If $Z \sim \text{ND}(0, 1)$, find $\Pr\left(\frac{120 200}{50} \le Z \le \frac{170 200}{50}\right)$.
- 7. Besides pnorm(), there are other functions related to the normal distribution:
 - (a) The function rnorm(n, mean, sd) generates n random samples from a normal population with mean mean and standard deviation sd. To see this, try hist(rnorm(100, 10, 2)). How to make the output look more like a normal distribution?
 - (b) The function qnorm(p, mean, sd) returns a number x such that p equals pnorm(x, mean, sd). To see how this works, try q <- qnorm(0.05, 10, 2) and p <- pnorm(q, 10, 2).
 - (c) If $X \sim ND(80, 10)$, find x such that $Pr(X \le x) = 0.8$.
- 8. The daily demand of a product $X \sim ND(80, 10)$. At the end of each day, you place an order to order q units from your supplier. The products will be ready at your store the next morning. Unsold products will become valueless.
 - (a) If q = 95, what is the probability of having a shortage?
 - (b) Suppose you want to have a service level of 90%, i.e., with probability 90% you will fulfill all daily demands. Find the minimum q (must be an integer) that achieves this service level.
 - (c) For each integer between 60 and 100, find the corresponding service level. Then draw a scatter plot for the 41 pairs of order quantities and service levels.
 - (d) Write R codes without qnorm() to solve Part (b).Hint. The service levels found in Part (c) are useful.