Statistics and Data Analysis
 Homework 3

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. Consider a random variable X with the following probability distribution:

x	1	2	3	4
$\operatorname{Pr}(X=x)$	0.5	0.25	0.125	0.125

(a) Draw a bar chart to illustrate the probability distribution.
(b) What is the expected value of $X, \mathbb{E}[X]$?
(c) What is the variance of $X, \operatorname{Var}(X)$?
(d) What is the standard deviation of X ?
2. Consider a random variable X that is uniformly distributed between 0 and 10 .

Note. We will write $X \sim \operatorname{Uni}(a, b)$ if X is uniformly distributed between a and b.
(a) Find $\operatorname{Pr}(X=3)$.
(b) Find $\operatorname{Pr}(X \geq 20)$.
(c) Find $\operatorname{Pr}(X \geq 6)$.
(d) Find $\operatorname{Pr}(2 \leq X \leq 7)$.
(e) Find the pdf of X.
3. By using R, one may easily generate random numbers following a given distribution, which is equivalent to sampling from a population that follows that distribution. In particular, we may use the function sample (x , size) to randomly draw a sample of size size from the population x without replacement.
(a) Try $\mathrm{x}<-\operatorname{seq}(1,10,1)$ and then sample $(\mathrm{x}, 10)$ for a few times. What do you get?
(b) Now try sample (x, 10, replace = TRUE) for a few times. Is there anything different?
(c) How to randomly draw one student in our class to win a prize? How to randomly draw three?
4. Let X be the outcome of rolling a fair dice. We know it follows a discrete uniform distribution between 1 and 6 . Let's roll this dice for 10000 times and count the frequencies:

```
trial <- 10000
x <- rep(0, trial)
for(i in 1:trial)
{
    x[i] <- sample(1:6, 1)
}
table(x)
```

Does the outcome look uniform?
5. Let X_{1}, X_{2}, and X_{3} be the outcome of rolling three fair dices. What is the probability distribution of $Y=X_{1}+X_{2}+X_{3}$?
(a) What are the possible values of Y ?
(b) Let's roll these dices for 10000 times and count the frequencies:

```
trial <- 10000
x <- rep(0, trial)
for(i in 1:trial)
{
    x[i] <- sum(sample(1:6, 3, replace = TRUE))
}
oc <- as.data.frame(table(x))
barplot(oc$Freq / trial, names.arg = oc$x)
```

6. We have used the R function pnorm (q , mean, sd) to calculate the left-tail probability of normal distributions. Let's do some more practices.
(a) If $X \sim \operatorname{ND}(10,2)$, find $\operatorname{Pr}(X \leq 7)$.
(b) If $X \sim \operatorname{ND}(10,2)$, find $\operatorname{Pr}(X \geq 13)$.
(c) If $X \sim \operatorname{ND}(200,50)$, find $\operatorname{Pr}(120 \leq X \leq 170)$.
(d) If $Z \sim \operatorname{ND}(0,1)$, find $\operatorname{Pr}\left(\frac{120-200}{50} \leq Z \leq \frac{170-200}{50}\right)$.
7. Besides pnorm(), there are other functions related to the normal distribution:
(a) The function $\operatorname{rnorm}(\mathrm{n}$, mean, sd) generates n random samples from a normal population with mean mean and standard deviation sd. To see this, try hist(rnorm(100, 10, 2)). How to make the output look more like a normal distribution?
(b) The function qnorm (p, mean, sd) returns a number x such that p equals pnorm (x , mean, sd). To see how this works, try q <- qnorm $(0.05,10,2)$ and $\mathrm{p}<-\mathrm{pnorm}(\mathrm{q}, 10,2)$.
(c) If $X \sim \operatorname{ND}(80,10)$, find x such that $\operatorname{Pr}(X \leq x)=0.8$.
8. The daily demand of a product $X \sim \operatorname{ND}(80,10)$. At the end of each day, you place an order to order q units from your supplier. The products will be ready at your store the next morning. Unsold products will become valueless.
(a) If $q=95$, what is the probability of having a shortage?
(b) Suppose you want to have a service level of 90%, i.e., with probability 90% you will fulfill all daily demands. Find the minimum q (must be an integer) that achieves this service level.
(c) For each integer between 60 and 100, find the corresponding service level. Then draw a scatter plot for the 41 pairs of order quantities and service levels.
(d) Write R codes without qnorm() to solve Part (b).

Hint. The service levels found in Part (c) are useful.

