Statistics and Data Analysis Suggested Solution for Homework 3

Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

1. The following R codes solve this problem:
```
x <- c(1, 2, 3, 4)
p <- c(0.5, 0.25, 0.125, 0.125)
barplot(p, names.arg = x, xlab = "x", ylab = "Probability") # (a)
mu.x <- sum(x * p) # (b)
var.x <- sum((x - mu.x ^2 * p) # (c)
sd.x <- sqrt(var.x) # (d)
```

(a) The probability distribution is depicted in Figure 1.

Figure 1: Probability distribution for Problem 1a
(b) $\mathbb{E}[X]=1.875$.
(c) $\operatorname{Var}(X)=1.109$.
(d) The standard deviation is $\sqrt{1.109}=1.053$.
2. (a) $\operatorname{Pr}(X=3)=0$.
(b) $\operatorname{Pr}(X \geq 20)=0$.
(c) $\operatorname{Pr}(X \geq 6)=0.4$.
(d) $\operatorname{Pr}(2 \leq X \leq 7)=0.5$.
(e) The pdf of X is $f(x)=0.1$ for all $x \in[0,10]$.
3. (a) The 10 integers between 1 and 10 are randomly drawn in order in a nonrepeating manner. In effect, the 10 integers between 1 and 10 are randomly permuted.
(b) Now the 10 integers are randomly randomly drawn in a repeating manner. Some values may show up for multiple time while some others do not show up.
(c) sample $(1: 42,1)$ and sample $(1: 42,3)$.
4. Yes, especially when trial is set to a large number.
5. Let X_{1}, X_{2}, and X_{3} be the outcome of rolling three fair dices. What is the probability distribution of $Y=X_{1}+X_{2}+X_{3}$?
(a) $3,4,5, \ldots$, and 18 .
(b) Each time we conduct this experiment by running these codes, we see a figure similar to Figure 2. It is more likely to see values close to 11 .

Figure 2: Probability distribution for Problem 5b
6. We have used the R function pnorm (q , mean, sd) to calculate the left-tail probability of normal distributions. Let's do some more practices.
(a) $\operatorname{Pr}(X \leq 7)=0.067$. This can be found by executing pnorm $(7,10,2)$.
(b) $\operatorname{Pr}(X \geq 13)=0.067$. This can be found by executing $1-\operatorname{pnorm}(13,10,2)$.
(c) $\operatorname{Pr}(120 \leq X \leq 170)=0.219$. This can be found by executing pnorm $(170,200,50)$ pnorm(120, 200, 50).
(d) $\operatorname{Pr}\left(\frac{120-200}{50} \leq Z \leq \frac{170-200}{50}\right)=0.219$. In fact, we have

$$
\operatorname{Pr}\left(\frac{a-200}{50} \leq Z \leq \frac{b-200}{50}\right)=\operatorname{Pr}(a \leq X \leq b)
$$

for any a and b.
7. Besides pnorm(), there are other functions related to the normal distribution:
(a) To make the output look more like a normal distribution, we may increase the value of the first argument. For example, using 10000 will make the output quite like a normal distribution.
(b) We will see that p is 0.05 .
(c) $\operatorname{Pr}(X \leq x)=0.8$ when $x=88.416$. This can be found by executing qnorm $(0.8,80,10)$.
8. The daily demand of a product $X \sim \operatorname{ND}(80,10)$. At the end of each day, you place an order to order q units from your supplier. The products will be ready at your store the next morning. Unsold products will become valueless.
(a) The probability is 0.067 . This can be found by executing 1 - pnorm (95, 80, 10).
(b) Find the minimum integer q that achieves a 90% service level is 93 . To see this, note that qnorm ($0.9,80,10$) returns 92.816 . Therefore, the smallest integer that satisfies our requirement is 93 .
(c) The correspondences between order quantities and service levels are illustrated in

Figure 3: Probability distribution for Problem 8c

This figure can be generated by the following R codes:

```
q<- 60:100
s <- pnorm(q, 80, 10)
plot(x = q, y = s, xlab = "Order quantity", ylab = "Service level")
```

(d) The R code that solves Part (b) is $q[\min (w h i c h(s>=0.9))]$, where q and s have been defined in Part (c).

