Statistics and Data Analysis Homework 4: Sampling Distributions and Estimations

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

- 1. The 1000 bags of candies produced by me follow ND(2, σ). My mom randomly draws n bags and calculate the sample mean \bar{x} . If $\bar{x} > 2.2$ or $\bar{x} < 1.8$, I will get punished. I want to know the probability for me to get punished under the following conditions:
 - (a) $\sigma = 0.5$ and n = 5?
 - (b) $\sigma = 0.1$ and n = 5?
 - (c) $\sigma = 0.5$ and n = 3?
 - (d) $\sigma = 0.1$ and n = 3?
- 2. A laptop manufacturer produces a type of laptop starting from 2013. At that time, the average battery life is 5 hours. Last month, a new technology was introduced, and the average battery life was expected to increase. The manufacturer wants to know whether the new technology really brought a significant improvement and make the current average battery life $\mu > 6$. For simplicity, let's assume that the current standard deviation is known to be 0.6 hour.¹
 - (a) Suppose we randomly draws 9 laptops and obtains a sample mean \bar{x} . What is the sampling distribution of \overline{X} ?
 - (b) If μ is indeed 6, how likely will we get a sample mean that is below 5.7?
 - (c) If μ is indeed 6, how likely will we get a sample mean that is below 7.4?
 - (d) If μ is indeed 6, find a such that $Pr(\overline{X} > a) = 0.05$.

Note. The value *a* found in this problem provides a decision rule to us: If we obtain $\bar{x} > a$, we may conclude with a 95% confidence level that μ is strictly greater than 6. This is simply because "if μ is still 6 (or smaller than 6), it will be quite unlikely (only with a 5% probability) to see $\bar{x} > a$; but we see $\bar{x} > a$, so it is reasonable to believe that $\mu > 6$ (and the probability for this belief to be wrong is less than 5%)." This is a direct application of sampling distributions. We will investigate this kind of statistical testing more after the midterm exam.

- 3. Qualitatively answer the following true-and-false questions regarding interval estimation for the population mean:
 - (a) After we choose the sample size and confidence level but before we sample from the population, the confidence interval that we will construct after sampling is random.
 - (b) Suppose the population variance is unknown. For a given confidence level, increasing the sample size enlarges the confidence interval.
 - (c) Suppose the population variance is known. For a given leg length, increasing the confidence level requires a larger sample size.
 - (d) Suppose the population follows a normal distribution, the sample size is small, and the population variance is known. In this case, we cannot use the z distribution to do estimation.
 - (e) Suppose the population follows a non-normal distribution, the sample size is large, and the population variance is unknown. In this case, we can use the t distribution to do estimation.

Note. This kind of qualitative problems may appear in the midterm exam with some modifications. However, no problem will ask you to really construct a confidence interval.

¹Note that even if we do not know the population standard deviation, we may still apply the t distribution to estimate μ and conduct other statistical studies. The assumption of known population standard deviation is simply for educational purpose.