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1. (a) By executing the following R codes

D <- read.table("Bike_Day.txt", header = TRUE, sep = "\t")

fit <- lm(D$cnt ~ D$instant + D$weathersit)

summary(fit)

we get the regression model as

cnt = 3822.38 + 5.71instant− 1009.74weathersit. (1)

(b) Because weathersit is a categorical variable with values not 0 and 1, using it in building a
regression model is problematic. Even though the p-value of weathersit is small and the R2

of the model is not small, the coefficient −1009.74 has no physical meaning.

2. (a) By executing the following R codes

D <- read.table("Bike_Day2.txt", header = TRUE, sep = "\t")

fit <- lm(D$cnt ~ D$instant + D$cloudy + D$rainy)

summary(fit)

we get the regression model as

cnt = 2776.28 + 5.7instant− 813.69cloudy− 2889.1rainy. (2)

For a cloudy day, we expect to get 813.69 fewer rentals than a sunny day. For a rainy day, we
expect to get 2889.1 fewer rentals than a sunny day. Please note that we have no idea about
the difference between the rentals in a cloudy and a rainy day. This is because that we use
the sunny day as the reference level (the one encoded with all 0s).

(b) The regression model is fine. All variables that we are using are either quantitative variables
(instant) or indicator variables (cloudy and rainy). The coefficients all have physical meanings.

3. (a) We get the model in (1). It is a bad regression model.

(b) We get the model in (2). It is a good regression model.

(c) We also get the model in (2). It is good.

4. (a) By executing the following R codes

M <- read.table("Bike_Month.txt", header = TRUE, sep = "\t")

season <- factor(M$season)

fit <- lm(M$cnt ~ M$instant + season)

summary(fit)

we get the regression model as

cnt = 41323.9 + 5568instant + 55282.3season2 + 54413.6season3− 4609.3season4.

Compared to months in season 1 (the reference level), for months in season 2 we expect to get
55282.3 more rentals, for months in season 3 we expect to get 54413.6 more rentals, and for
months in season 4 we expect to get 4609.3 fewer rentals. However, because the p-value for
season4 is 0.749, there is no significant difference between seasons 1 and 4. The R2 = 0.8569
shows that around 86% of monthly rentals can be explained by the increasing trend and
seasonal impact.

(b) By executing the following R codes
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M <- read.table("Bike_Month.txt", header = TRUE, sep = "\t")

month <- factor(M$month)

fit <- lm(M$cnt ~ M$instant + month)

summary(fit)

we get the regression model as

cnt = 28263 + 5600.5instant + 2609month2 + 35792.5month3

+ 50279month4 + 75974.5month5 + 77702.0month6

+ 71404.5month7 + 68927.0month8 + 60724.9month9

+ 43304.9month10 + 3943.9month11 − 23554.1month12.

For each month, the coefficient is the expected difference on monthly rentals between January
and that month. However, because the p-value for month2, month11 and month12 are all
larger than 0.1, there is no significant difference between January and one of the three months
at the 90% significance level. The R2 = 0.9712 shows that around 97% of monthly rentals
can be explained by the increasing trend and monthly differences.

5. (a) One possible way to answer this question is to construct a linear regression model with year
and price. By executing the R codes

C <- read.table("Car.txt", header = TRUE, sep = "\t")

fit <- lm(C$Price ~ C$Year)

summary(fit)

we get the regression model as

price = 440.54 − 47.6year.

When one year passes, the expected price of a house decreases by $476,000. The variable is
significant and the R2 is 0.7212. The residuals for this model are depicted in Figure 1.

Figure 1: Residuals for Problem 5a Figure 2: Residuals for Problem 5b

(b) By executing the R codes

YearSq <- C$Year^2

fit <- lm(C$Price ~ C$Year + YearSq)

summary(fit)
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we get the regression model as

price = 585.535 − 145.798year + 10.354year2.

Both variables are significant. Moreover, the R2 goes up to 0.9296 (and the adjusted R2 is
also higher than that with no year2). The new regression curve better fits the sample data.
The residuals for this model are depicted in Figure 2.

(c) The residuals of the first model has an unnatural pattern: The model underestimates the
prices of new and old cars but overestimates the prices of those cars with moderate ages. The
residuals of the second model does not have such an obvious pattern. Therefore, the second
model is better.
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