What is statistics? 000000	Syllabus 00000000	Basic concepts 0000000000000	The R programming language

GMBA 7098: Statistics and Data Analysis (Fall 2014)

Introduction

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 15, 2014

What is statistics?	Syllabus	Basic concepts	The R programming language
00000	0000000	000000000000	000000000000000000000000000000000000000

Road map

• What is statistics?

- ► Syllabus.
- ▶ Basic statistical concepts.
- ▶ The R programming language.

Coffee pricing

- ▶ How to set the price *p* of a cup of coffee?
- Suppose the problem is like this:
 - Supply: unit production cost is c.
 - Demand: D(p) = a bp.
 - ▶ What is the optimal price that maximizes the coffee shop's profit?

What is statistics?	Syllabus 00000000	Basic concepts 0000000000000	The R programming language

Coffee pricing

► Econ 101:

$$\max_{p} (p-c)(a-bp).$$

► First order condition:

$$\frac{\partial}{\partial p} \left[(p-c)(a-bp) \right] = a - 2bp + bc.$$

•
$$p^* = \frac{a+bc}{2b} > 0$$
 is the optimal price.

$$(a = 100, b = 2, c = 10)$$

What is statistics?	Syllabus 00000000	Basic concepts 0000000000000	The R programming language

Coffee pricing

- For different demand function, we have different optimal prices.
- But what is **the** demand function?
 - How to measure a and b?
 - Is D(p) really a and b?
 - If not, what factors also affect D?

Measuring unknowns in the world

- ▶ It is always challenging to **measure unknowns** in the world.
- ► To help us measure unknowns, people develop **statistics**.
- ► Statistics is the **science** of gathering, analyzing, interpreting, and presenting **numerical** data.
 - ▶ For texts: text mining, natural language processing, etc.
 - ▶ For images: image recognition, digital image processing, etc.
- ▶ Mathematics (particularly probability) is required.
- ▶ Goal: to achieve better decision making.

What is statistics?	Syllabus	Basic concepts	The R programming language
00000	0000000	0000000000000	000000000000000000000000000000000000000

What is Statistics?

- ▶ Many things are unknown...
 - ▶ Consumers' tastes.
 - Quality of a product.
 - Stock prices.
 - Employees' preferences.
- ▶ The study of Statistics includes:
 - Descriptive Statistics.
 - Probability.
 - ▶ Inferential Statistics: Estimation.
 - Inferential Statistics: Hypothesis testing.
 - ▶ Inferential Statistics: Prediction.
- ▶ In summary: To estimate, test, and predict those unknowns.

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	•0000000	0000000000000	

Road map

- ▶ What is statistics?
- ► Syllabus.
- ▶ Basic concepts.
- ▶ The R programming language.

The instructing team

► Instructor:

- Ling-Chieh Kung.
- ▶ Third-year assistant professor.
- ▶ Department of Information Management.
- ▶ Office: Room 413, Management Building II.
- ► Office hour: 9:00am-10:30am, Thursday or by appointment.
- ▶ E-mail: lckung@ntu.edu.tw.
- ▶ Teaching assistant:
 - ▶ Ho Ho and Ian Zhong.
 - First-year master students.
 - ▶ Office: Room 320C, Management Teaching and Research Building.
 - ▶ Ho's E-mail: r02725041@ntu.edu.tw.
 - ▶ Ian's E-mail: r02725040@ntu.edu.tw.

Language and references

► Language: "All" English.

- ▶ All materials (including course videos) are in English.
- ▶ Students are encouraged (but not required) to speak English in class.
- ▶ The instructor speak Chinese or English in office hour.
- ▶ The instructor will speak Chinese in lectures when it helps.
- ► References:
 - ▶ Business Statistics: For Contemporary Decision Making by Ken Black.
 - ▶ Freakonomics by Steven Levitt and Stephen Dubner.
 - ▶ Learn R in a Day by Steven Murray (Amazon Kindle e-books only).
 - ▶ *Big Data* by Viktor Mayer-Schnberger and Kenneth Cukier.

What is statistics? 000000	Syllabus 000●0000	Basic concepts 0000000000000	The R programming language

"Flipped classroom"

- ▶ Lectures in **videos**, then discussions in classes.
- ▶ Before each Monday, the instructor uploads a video of lectures.
 - ▶ Ideally, the video will be no longer than one and a half hour.
 - Students must watch the video by themselves before that Monday.
- ▶ During the lecture, we do three things:
 - Discussing the lecture materials (0.5 to 1 hour).
 - Doing on-site exercises (1 to 2 hours).
 - Further discussions (0.5 to 1 hour).
 - ► Solving **lecture problems** to earn points.
- ▶ Teams:
 - ▶ Students form teams to work on class problems and case studies.
 - ▶ Students will be **randomly** grouped into teams with about three people.
 - ▶ For different modules, one may have different teammates.

Homework, office hour, project, and exam

- ▶ No homework!
- ▶ Office hour:
 - ▶ 9:00am-10:30am, Thursday or by appointment.
- ▶ Case studies:
 - Three case studies about real stories or real data.
 - One for each module.
- ▶ Midterm exam:
 - ▶ In-class and open whatever you have (including all electronic devices).
 - ▶ No information is allowed to be transferred among students.
 - There is no final exam.
- ► Final project:
 - Students form teams to apply the techniques learned in this course to a self-selected problem.
 - ▶ Each team does an oral presentation in one of the last two weeks.
 - ▶ All team members must be in class for the team to present.

What is statistics?	Syllabus 00000●00	Basic concepts 0000000000000	The R programming language

Grading

- ▶ Class participation: 10%.
- ▶ Lecture problems: 20%.
- Three case reports: 15% (5% each).
- ▶ One case presentation: 10%.
- \blacktriangleright Midterm exam: 15%.
- ▶ Final project: 30%.
- ▶ The final letter grades will be given according to the following conversion rule:

Letter	Range	Letter	Range	Letter	Range
A+ A A-	$\begin{array}{c} [90, 100] \\ [85, 90) \\ [80, 85) \end{array}$	B+ B B-	$[77, 80) \\ [73, 77) \\ [70, 73)$	C+ C C-	[67, 70) [63, 67) [60, 63)

Important dates and tentative plan

- ▶ Important dates:
 - Week 4 (2014/10/6): TA session because the instructor is in the military.
 - ▶ Week 9 (2014/11/10): Midterm exam.
 - Weeks 17 and 18 (2015/1/5 and 2015/1/12): Project presentations.
- ▶ Tentative plan:
 - ▶ Foundation (five weeks).
 - ▶ Inferential Statistics (four weeks).
 - ▶ Advanced Techniques (five weeks).
 - ► Applications (four weeks).

Online resources

► CEIBA.

- Viewing your grades.
- ▶ Receiving announcements.
- http://www.ntu.edu.tw/~lckung/courses/SDA-Fa14/.
 - Downloading course materials.
- ▶ The bulletin board "NTUIM-lckung" on PTT.
 - Discussions.
- ► YouTube:
 - Watching lecture videos.

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	•000000000000	

Road map

- ▶ What is statistics?
- ► Syllabus.
- ► Basic concepts.
- ▶ The R programming language.

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Populations vs. samples

- ► A **population** is a collection of persons, objects, or items.
 - A **census** is to investigate the whole population.
- A **sample** is a portion of the population.
 - **Sampling** is to investigate only a subset of the population.
 - We then use the information contained in the sample to **infer** ("guess") about the population.
- ▶ What are samples for the following populations?
 - All students in NTU.
 - ▶ All students in the business school.
 - All chips made in one factory.
 - ▶ All consumers who have bought iPhone 5.
- ▶ Two important questions:
 - Why sampling?
 - ► Is a sample **representative**?

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Descriptive vs. inferential statistics

• Descriptive statistics:

- Graphical or numerical summaries of data.
- Describing (visualizing or summarizing) a set of data.

• Inferential statistics:

- ▶ Making a "scientific guess" on unknowns.
- ▶ Trying to say something about the population.
- ▶ Which is descriptive and which is inferential?
 - ▶ Calculating the average height of 1000 randomly selected NTU students.
 - ▶ Using this number to estimate the average height of all NTU students.
- Another example (pharmaceutical research):
 - ▶ All the potential patients form the population.
 - A group of randomly selected patients is a sample.
 - ▶ Use the result on the sample to infer the result on the population.

Parameters vs. statistics

- A numerical summary of a population is a **parameter**.
 - ▶ The average height of all NTU students.
 - a and b in the demand function D(p) = a bp.
- A numerical summary of a sample is a **statistic**.
 - ▶ The average height of all NTU male students.
 - ▶ The demand function generated by 1000 randomly selected people.
- ▶ Almost always people use a statistic to infer a parameter.
 - ▶ Some statistics are "good" while some are "bad."

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	000000000000	

Parameters vs. statistics: an example

- ► A laptop manufacturer wants to know the largest weight one can put on a type of laptop without destroying it.
 - Let's call this number x_i for the *i*th laptop produced.
 - x_i s may be different for different laptops.
- ▶ Suppose 100000 laptops have been produced.
- ► The **parameter**: $\theta = \min_{i=1,\dots,100000} \{x_i\}.$
 - ▶ This will be the number announced to the public.
- ▶ Can the manufacturer conduct a census?

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Parameters vs. statistics: an example

- ▶ Probably 50 laptops will be randomly chosen as a sample.
- ► For each laptop, we do an experiment (and destroy it) to get a number x_i , i = 1, 2, ..., 50.
- These x_i s form a sample.
- ▶ What is a **statistic**?

•
$$\bar{x} = \frac{\sum_{i=1}^{50} x_i}{50}$$
 is a statistic.

- ► $x_{\min} = \min_{i=1,...,50} \{x_i\}$ is another statistic.
- ▶ Which statistic is "closer to" the parameter?

What is statistics?	Syllabus	Basic concepts	The R programming language 000000000000000000000000000000000000
000000	00000000	000000000000	

Parameters vs. statistics

- A parameter is a **fixed number**.
 - E.g., $\theta = \min_{i=1,...,100000} \{x_i\}.$
 - E.g., the average height of all NTU students.
- A statistic is a **function** whose outcome is **random**.
 - ▶ Two different random samples typically generate two values of a statistic.
 - ▶ The sampling process matters.

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	00000000000000	

Another example

- ▶ (Suppose) there is a new proposal of increasing the tuition of all students by 5% in NTU.
- ▶ We want to know the percentage of students supporting it.
 - What is the population?
 - ▶ What statistics would you choose?
 - ▶ Is it fine to sample by standing in front of Building I of the College of Management? How would you form a sample?

Levels of data measurement

- Most data we will play with are numerical.
- ▶ Numerical data may be categorized to three levels:
 - ▶ Nominal.
 - Ordinal.
 - Quantitative: interval or ratio.

What is statistics? 000000	Syllabus 00000000	Basic concepts 000000000000000	The R programming language

Nominal level

- ► A nominal scale classifies data into categories with no ranking.
- ▶ Data are labels or names used to identify an attribute of the element.
- ▶ The label may be numeric or non-numeric label.
- ► Examples:

Categorical variables	Values (Categories)
Laptop ownership	Yes / No
Citizenship	Taiwan / Japan /
Country code	886 / 86 / 1 /

▶ Arithmetic operations **cannot** be applied on nominal data.

What is statistics? 000000	Syllabus 00000000	Basic concepts 000000000000000	The R programming language

Ordinal level

- ► An ordinal scale classifies data into categories with ranking.
- The order or rank of the data is meaningful.
- ▶ However, differences between numerical labels **do not** imply distances.
- Examples:

Categorical variables	Values (Categories)
Product satisfaction	Satisfied, neutral, unsatisfied
Professor rank	Full, associate, assistant
Ranking of scores	1, 2, 3, 4,

- ▶ It is still not meaningful to do arithmetic on ordinal data.
 - Assistant + associate = full?!
 - ▶ The grade difference between no. 1 and no. 5 may not be equal to that between no. 11 and no. 15.

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	000000000000000	

Quantitative (interval and ratio) levels

- ▶ An **interval** scale is an ordered scale in which the **difference** between measurements is a meaningful quantity but the measurements do not have a true zero point.
- ► A ratio scale is an ordered scale in which the difference between measurements is a meaningful quantity and the measurements have a true zero point.
- ▶ Ratio data appear more often in the world.
 - ▶ Heights, weights, income, prices.
- ▶ Interval data are actually rare.
 - ▶ Degrees in Celsius or Fahrenheit.
 - ▶ GRE or GMAT scores.
- ▶ How about degrees in Kelvin?

Some remarks

- ▶ Nominal and ordinal data are called **qualitative data**.
- ▶ Interval and ratio data are called **quantitative data**.
- Most statistical methods are for quantitative data; some are for qualitative data.
 - Distinguishing nominal and ordinal scales is important.
 - Distinguishing interval and ratio scales is not.
- Sometimes quantitative data are called **numeric** data.

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	000000000000●	

A short summary

- ▶ Understand these terms:
 - Populations vs. samples.
 - Parameters vs. statistics.
 - ▶ Inferential statistics vs. descriptive statistics.

▶ For each scale of measurement, is it meaningful to calculate ...

Level	Ranking	Distance
Nominal Ordinal Quantitative		

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	00000000000000	

Road map

- ▶ What is statistics?
- ▶ Basic concepts.
- ▶ Syllabus.
- ► The R programming language.

The R programming language

- ▶ **R** is a programming language for statistical computing and graphics.
- ▶ R is open source.
- ▶ R is powerful and flexible.
 - ▶ It is fast.
 - ▶ Most statistical methods have been implemented as packages.
 - One may write her own R programs to complete her own task.
- ▶ http://www.r-project.org/.
- ▶ To download, go to http://cran.csie.ntu.edu.tw/, choose your platform, then choose the suggested one (the current version is 3.1.1).

The programming environment

▶ When you run R, you should see this:

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	00000000000000	

Interface setting

▶ You may start right away or (like me) change the interface setting:

Interface setting

 You may change font, font size, background color, text color, etc.

Rgui Configuration Editor	r		
Single or multiple	I MDI I SDI	MDI toolbar MDI statusbar	
Pager style	 multiple windows single window 	Language for menus and messages	
Font Courier New	▼ TrueType only	size 10 🗸 style normal 🗸	•
Console rows 23 vertice set options(width) vertice by d Pager rows 25 Graphics windows: initia	columns 77 In on resize? bi lefault? Cr columns 80 il left -25 tc	itial left 0 top 0 uffer chars 250000 lines 8000 ursor blink Partial -	
background normaltext usertext pagerbg	Console and Pa wheat2 wheat3 wheat4 white	ger Colours	
Apply	Save Load	OK Cancel	

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Applying your setting

• Apply it. Save it for future use (by loading it).

🥂 RGui (64-bit)		5
File Edit View Misc Packages Windows Help		
R Console		4
R version 3.1.1 (2014-07-10) "Sock it to Me"		
Copyright (C) 2014 The R Foundation for Statistical Com	puting	
Platform: x86_64-w64-mingw32/x64 (64-bit)		
R is free software and comes with ABSOLUTELY NO WARRANT	v	
You are welcome to redistribute it under certain condit.	Rgui Configuration Editor	
Type 'license()' or 'licence()' for distribution detail	Single or multiple 💿 MDI 💿 SDI 📝 MDI toolbar 📄 MDI statusbar	-
Natural language support but running in an English lo	Pager style @ multiple windows Language for menus	
Actual rangaage support but ranning in an Engrish ro	ingle window and messages	
R is a collaborative project with many contributors.	Font Courier New V TrueType only size 14 v style bold v	
Type 'contributors()' for more information and		
Citation() on now to cite k of k packages in publicat	Console rows 46 columns 172 Initial left 0 top 0	
Type 'demo()' for some demos, 'help()' for on-line help	V set options(width) on resize? buffer chars 250000 lines 8000	
'help.start()' for an HTML browser interface to help.	Cursor blink Partial	
Type (d() to duit R.	Pager rows 25 columns 80	
>	Graphics windows: initial left -25 top 0	
	Console and Pager Colours	
	beckground bisque2 Sample text	
	normaltext bisque3 usertext bisque4	
	pagerbg v black v	
	Apply Save Load OK Cancel	
7		-

What is statistics? 000000	Syllabus 00000000	Basic concepts 00000000000000	The R programming language

Try it!

▶ Type some mathematical expressions!

> 1 + 2
[1] 3
> 6 * 9
[1] 54
> 3 * (2 + 3) / 4
[1] 3.75

Or if you prefer:

```
> log(2.718)
[1] 0.9998963
> 10 ^ 3
[1] 1000
> sin(3.1416)
[1] -7.34641e-06
```

	What is statistics? 000000	Syllabus 00000000	Basic concepts 00000000000000	The R programming language $000000000000000000000000000000000000$
--	-------------------------------	----------------------	----------------------------------	---

Let's do statistics

- ▶ A wholesaler has 440 customers in Portugal:
 - ▶ 298 are "horeca"s (hotel/restaurant/café).
 - 142 are retails.
- ▶ These customers locate at different regions:
 - Lisbon: 77.
 - Oporto: 47.
 - Others: 316.
- http://archive.ics.uci.edu/ml/datasets/ Wholesale+customers.

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	00000000000000	

Let's do statistics

▶ The data:

Channel	Label	Fresh	Milk	Grocery	Frozen	D. & P.	Deli.
1	1	30624	7209	4897	18711	763	2876
1	1	11686	2154	6824	3527	592	697
				:			
2	3	14531	15488	30243	437	14841	1867

- ▶ The wholesaler records the annual amount each customer spends on six product categories:
 - ▶ Fresh, milk, grocery, frozen, detergents and paper, and delicatessen.
 - ▶ Amounts have been scaled to be based on "monetary unit."
- ▶ Channel: hotel/restaurant/café = 1, retailer = 2.
- Region: Lisbon = 1, Oporto = 2, others = 3.

What is statistics? 000000	Syllabus 00000000	Basic concepts 0000000000000	The R programming language

The work directory

- ▶ The data are provided in a TXT file "data_wholesale.txt."
- ► To start our analysis with R, first we set up our work directory.
- To set up the work directory:
 - > setwd("C:/Users/user/Documents/R")
 - > getwd()
 - [1] "C:/Users/user/Documents/R"
 - ▶ Create the directory before you use it!

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Loading data from a TXT file

▶ Loading data from a TXT file with columns separated by tabs:

data_wholesale.txt	- 記事本					
檔案(E) 編輯(E) 格	式(O) 檢視	(⊻) 說明(Ŀ	Ð			
Channel Region 1 1 1 1 1 1 1 1 1 1	Fresh 30624 11686 9670 25203	Milk 7209 2154 2280 11487	Grocery 4897 6824 2112 9490	Frozen 18711 3527 520 5065	D_Paper 763 592 402 284	Delicassen 2876 697 347 6854
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	583 1956 6373 1537 18567	685 891 780 3748 1895	2216 5226 950 5838 1393	469 1383 878 1859 1801	954 5 288 3381 244	18 1328 285 806 2100

- > W <- read.table("data_wholesale.txt", header = TRUE)</pre>
- ▶ W is a **data frame** that stores the data.
- <- assigns the values at its right to the variable at its left.</p>

What is statistics? 000000	Syllabus 00000000	Basic concepts 00000000000000	The R programming language

Browsing data

- ▶ To browse the data stored in a data frame:
 - > W

- > head(W)
- > tail(W)
- ▶ To extract a row or a column:
 - > W[1,]
 - > W\$Channel
 - > W[, 1]
- ▶ What is this?
 - > W[1, 2]

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	00000000000000	

Extracting more rows or columns

- ▶ To extract multiple rows or columns:
 - > W[1:6,]
 - > W[, 1:3]
 - > head(W[, 1:3])
- ▶ How about nonconsecutive rows or columns?
 - > W[c(1, 4:6),]
 - > head(W[, c(2, 5:6)])
- In general, c() does all kinds of concatenations and i: j produces a sequence of integers from i to j.
- ▶ How about these?
 - > head(cbind(W\$Channel, W\$Region))
 - > head(cbind(Channel = W\$Channel, Region = W\$Region))

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	0000000	0000000000000	000000000000000000000000000000000000000

Basic statistics

- ▶ The **mean** (average) expenditure on milk:
 - > mean(W\$Milk)
- ► The **standard deviation** of expenditure on milk:
 - > sd(W\$Milk)
- ▶ What is the mean expenditure on milk for those who
 - live in Lisbon (Region is 1) and
 - ► consume at hotel/restaurant/café (Channel is 1)?
 - > mean(W\$Milk[1:59])
- ▶ There must be a better way!

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Extracting rows by conditions

- ▶ Let's find those records for consumption at hotel/restaurant/café:
 - > which(W\$Channel == 1)
 - which() takes a vector and examine whether each element satisfies the given condition. If so, it returns that index.
 - ▶ W\$Channel[1] is 1, W\$Channel[400] is 2, etc.
- ► = is for **assignment** and == is for **comparison**!
 - ▶ To assign a value to a variable, use =.
 - ▶ To test whether two values are equal, use ==.
- ▶ Now, we know what this is:
 - > mean(W\$Milk[which(W\$Channel == 1)])
- ► What is next?

What is statistics?	Syllabus	Basic concepts	The R programming language 000000000000000000000000000000000000
000000	00000000	0000000000000	

Combining conditions

- ► To specify an "and" operation, use & (ampersand).
 - > mean(W\$Milk[which(W\$Channel == 1 & W\$Region == 1)])
- ► To specify an "or" operation, use | (bar).
 - > mean(W\$Milk[which(W\$Channel == 1 | W\$Region == 1)])
- ▶ To specify a "not" operation, use ! (exclamation).
 - > mean(W\$Milk[which(W\$Channel == 1 | !(W\$Region == 1))])
- ▶ This also works:
 - > index <- which(m\$Channel == 1 & m\$Region == 1)</pre>
 - > mean(m\$Milk[index])

What is statistics? 000000	Syllabus 00000000	Basic concepts 00000000000000	The R programming language

Exercises

▶ Fill in this table:

Channel		Region	
Chaimei	1	2	3
1	3870.20		
2			

Mean expenditures on milk

▶ What is this?

> mean(which(W\$Channel == 1 & W\$Region == 1))
[1] 30

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Some more basic statistics

- ► Counting:
 - > length(which(W\$Channel == 1 & W\$Region == 1))
- ▶ Median:
 - > median(W\$Milk[which(W\$Channel == 1 & W\$Region == 1)])
- Maximum and minimum:
 - > max(W\$Milk[which(W\$Channel == 1 & W\$Region == 1)])
 - > min(W\$Milk[which(W\$Channel == 1 & W\$Region == 1)])
- Correlation coefficient:
 - > a <- W\$Milk[which(W\$Channel == 1 & W\$Region == 1)]
 > b <- W\$Grocery[which(W\$Channel == 1 & W\$Region == 1)]
 > cor(a, b)
 [1] 0.654953

Some more basic statistics

- ▶ In fact, you may simply do:
 - > cor(W[, 3:8])
- ► How to find the correlation coefficients of Grocery and each of the other five variables?
 - Hint: Apply extractions with c() and : on the matrix produced by cor(W[, 3:8]).

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Basic graphs: Scatter plots

> plot(W\$Grocery, W\$Fresh)

> plot(W\$Grocery, W\$D_Paper)

Overview

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Basic graphs: histograms

> hist(W\$Milk[which(W\$Region == 1)])

What is statistics?	Syllabus	Basic concepts	The R programming language
000000	00000000	0000000000000	

Storing data to a TXT file

▶ To store the results of our calculation permanently:

▶ Before you close your R environment:

Save the current work **image** to store all the variables and their values.