GMBA 7098: Statistics and Data Analysis (Fall 2014)

Introduction to Probability (1)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

October 6, 2014

An example of statistical inference

- Quality control: For all LED lamps of brand IM, we are interested in μ, the average number of hours of luminance.
- Let's select a random sample of 40 lamps. A test shows that the sample average is $\bar{x}=28000$ hours.
- If I estimate that $\mu=28000$, how likely I will be right?
- If I estimate that $\mu \in[27000,29000]$, how likely I will be right?
- How about $\mu \in[26000,30000]$?
- To assess these probabilities, we need to study Probability.

Road map

- Basic concepts.
- Independent events.
- Random variables.
- Descriptive measurements.

Experiments and events

- An experiment is a process that produces (random) outcomes.
- Tossing a coin. Outcomes: head or tail.
- Testing a new drug on a patient: Outcomes: Effective, not effective, getting worse.
- Interviewing 20 consumers regarding how many will buy a new product. Outcomes: 10, 15, 0, etc.
- Sampling every 200th bottle of ketchup for its weight. Outcome?
- An event is an outcome of an experiments.
- Each event has its probability to occur.
- Tossing a fair coin: $\frac{1}{2}$ for head and $\frac{1}{2}$ for tail.
- Rolling a fair dice: $\frac{1}{6}$ for each possible outcome.
- Let A be an event of an experiment, we write $\operatorname{Pr}(A)$ to denote the probability for A to occur.
- Let A be getting a head when tossing a fair coin, then $\operatorname{Pr}(A)=\frac{1}{2}$.

Elementary events

- An elementary event is an event that cannot be decomposed into smaller events.
- Consider the experiment of rolling a dice.
- Getting 3 is an elementary event.
- How about getting a number larger than 3 ?
- The event of getting larger than 3 can be decomposed into three elementary events: getting 4,5 , and 6 .
- How about getting an even number?
- For asking Jane, Mary, Melissa, and Lucy about a new product:
- Is "one is willing to buy" an elementary event?
- How about "Mary is willing to buy but all the other three are not?"

Sample spaces

- The sample space of an experiment is the collection of all elementary events.
- A sample space contains "all basic things that may happen."
- Nothing outside the sample space can occur.
- What is the sample space of:
- Rolling a dice?
- Rolling two dices?
- Asking 20 consumers?
- Testing a new drug?
- If S is a sample space, we have $\operatorname{Pr}(S)=1$.
- A sample space is a set. Elementary elements are elements of the set. Events are subsets of the set.
- If x is an elementary event of an event X, we write $x \in X$.
- E.g., "getting 2 " \in "getting an even number."

Unions and intersections

- Let A and B be two events and S be the sample space.
- The union of A and B, denoted by $A \cup B$, contains elementary events in A or B.
- $A \cup B=\{x \mid x \in A$ or $x \in B\}$.
- E.g., $\{2,3,5\} \cup\{1,5,6\}=\{1,2,3,5,6\}$.
- The intersection of A and B, denoted by $A \cap B$, contains elementary events that are in A and B.
- $A \cap B=\{x \mid x \in A$ and $x \in B\}$.
- E.g., $\{2,3,5\} \cap\{1,5,6\}=\{5\}$.

Unions and intersections

- The union of two (or more) events is also an event.
- Consider rolling a fair dice.
- Let event A be getting an even number. We have $\operatorname{Pr}(A)=\frac{1}{2}$.
- Let event B be getting larger than three. We have $\operatorname{Pr}(B)=\frac{1}{2}$.
- The union probability of A and B is

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(\text { getting } 2,4,5, \text { or } 6)=\frac{2}{3}
$$

- The intersection of two (or more) events is also an event.
- Consider rolling a fair dice.
- The joint probability of A and B is

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(\text { getting } 4 \text { or } 6)=\frac{1}{3}
$$

- In fact, A and B are both unions of multiple elementary events.

Two special cases

- Events are mutually exclusive if there is no intersection.
- $A \cap B=\emptyset$ (empty).
- Events are mutually exclusive if all their elementary events are different.
- E.g., for rolling a dice, getting an even number and getting 5 are mutually exclusive.
- Events are collectively exhaustive if they together cover the whole sample space.
- $S=A \cup B$.
- Events are collectively exhaustive if one of them must occur.
- E.g., for rolling a dice, getting an even number and getting smaller than six are collectively exhaustive.
- Two collectively exhaustive sets are not necessarily mutually exclusive!

Complements

- The complement of X, denoted by X^{\prime}, contains all elements not contained in X.
- $X^{\prime}=\{x \mid x \notin X\}$, where $x \notin X$ means x is not an element of X.
- Graphically:
- E.g., for rolling a dice, getting less than three and getting greater than two are complements.
- E.g., for rolling a dice, getting less than three and getting greater than three are not complements.
- For any set X, X and its complement X^{\prime} are mutually exclusive and collectively exhaustive, i.e., $X \cap X^{\prime}=\emptyset$ and $X \cup X^{\prime}=S$.
- Intuitively, $\operatorname{Pr}\left(X^{\prime}\right)=1-\operatorname{Pr}(X)$.

Road map

- Basic concepts.
- Independent events.
- Random variables.
- Descriptive measurements.

Independent events

- Two events are independent if whether one occurs does not affect the probability for the other one to occur.
- Two events are dependent if they are not independent.
- A set of events are independent if all pairs of events are independent.
- Are the following pairs of events independent?
- Rolling two today and rolling three tomorrow with a fair dice.
- A customer is a man and he likes watching baseball.
- One's phone number contains " 7 " and she was born on July.
- A laptop is defective and it has a 14-inch screen.

Mathematical property

- For independent events, calculating the joint probability is easy:

Proposition 1

For any two independent events A and B, we have

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B) .
$$

- E.g., suppose we toss an unfair coin whose probability of head is $\frac{2}{3}$.
- Let H be getting a head and T be getting a tail in one toss: $\operatorname{Pr}(H)=\frac{2}{3}$ and $\operatorname{Pr}(T)=\frac{1}{3}$.
- Let $H H$ be getting two heads, $T T$ be getting two tails, $H T$ be getting a head then a tail, and $T H$ be getting a tail then a head in two tosses:

$$
\operatorname{Pr}(H H)=\operatorname{Pr}(H) \operatorname{Pr}(H)=\frac{4}{9}, \operatorname{Pr}(H T)=\operatorname{Pr}(H) \operatorname{Pr}(T)=\frac{2}{9}, \text { etc. }
$$

Joint probability tables

- Two experiments may be presented by a joint probability table.
- Events of experiment 1 are listed in the first column.
- Events of experiment 2 are listed in the first row.
- A column and a row at the margin for totals.
- For the previous example of an unfair dice:

1st	2 nd		Total
	H	T	
H	$?$	$?$	$\frac{2}{3}$
T	$?$	$?$	$\frac{1}{3}$
Total	$\frac{2}{3}$	$\frac{1}{3}$	1

- The last column records the probabilities of H and T for the first toss.
- The last row records the probabilities of H and T for the second toss.
- How to find the joint probabilities?

Calculating joint probabilities

- To find the joint probabilities of two independent events A and B, simply apply $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$.
- For the previous example of an unfair dice:

1st	2nd		Total
	H	T	
H	$\frac{4}{9}$	$\frac{2}{9}$	$\frac{2}{3}$
T	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
Total	$\frac{2}{3}$	$\frac{1}{3}$	1

- Each entry records a joint probability.
- Two joint events corresponding to two entries are mutually exclusive.
- The union probability can be found by summing up joint probabilities.
- E.g., the probability of "getting exactly one head" is

$$
\operatorname{Pr}(H T \text { or } T H)=\frac{2}{9}+\frac{2}{9}=\frac{4}{9}
$$

Joint probability tables with dependent events

- Events are not always independent.

	Supporting KMT	Supporting DPP	Neither
Will vote for Ko	17%	85%	37%
Will vote for Lien	71%	4%	20%

	Women	Men
Will vote for Ko	36%	39%
Will vote for Lien	54%	30%

(http://www.chinatimes.com/newspapers/20140929000800-260302)

Road map

- Basic concepts.
- Independent events.
- Random variables.
- Descriptive measurements.

Random variables

- A random variable (RV) is a variable whose outcomes are random.
- Examples:
- The outcome of tossing a coin.
- The outcome of rolling a dice.
- The number of people preferring Pepsi to Coke in a group of 25 people.
- The number of consumers entering a store at $7-8 \mathrm{pm}$.
- The temperature of this classroom at tomorrow noon.
- The average studying hours of a group of 10 students.

Discrete and continuous random variables

- A random variable can be discrete or continuous.
- For a discrete RV, its value is counted.
- The outcome of tossing a coin.
- The outcome of rolling a dice.
- The number of people preferring Pepsi to Coke in a group of 25 people.
- The number of consumers entering a store at $7-8 \mathrm{pm}$.
- For a continuous RV, its value is measured.
- The temperature of this classroom at tomorrow noon.
- The average studying hours of a group of 10 students.
- A discrete RV has gaps among its possible values; a continuous RV's possible values typically form an interval.

Discrete and continuous distributions

- How to describe a random variable?
- Writing down all possible values (the sample space) is not enough.
- For each possible value, we must also describe how likely it will occur.
- The likelihoods for all outcomes of a random variable to be realized are summarized by probability distributions, or simply distributions.
- As variables can be either discrete or continuous, distributions may also be either discrete or continuous.
- Today we study discrete distributions.
- In the next week we study continuous distributions.

Describing a discrete distribution

- For a discrete random variable, we may list all possible outcomes and their probabilities.
- Let X be the result of tossing a fair coin:

x	Head	Tail
$\operatorname{Pr}(X=x)$	$\frac{1}{2}$	$\frac{1}{2}$

- Let X be the result of rolling a fair dice:

x	1	2	3	4	5	6
$\operatorname{Pr}(X=x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- The function $\operatorname{Pr}(X=x)$, sometimes abbreviated as $\operatorname{Pr}(x)$, for all $x \in S$, is called the probability mass function (pmf) or probability function of X.
- For any random variable X, we have $\sum_{x \in S} \operatorname{Pr}(X=x)=1$.

Describing a discrete distribution: an example

- Let X_{1} be the result of tossing a fair coin for the first time.
- Let X_{2} be the result of tossing a fair coin for the second time.
- Let Y be the number of heads obtained by tossing a fair coin twice.
- What is the distribution of Y ?
- Possible values: 0,1 , and 2 .
- Probabilities: What are $\operatorname{Pr}(Y=0), \operatorname{Pr}(Y=1)$, and $\operatorname{Pr}(Y=2)$?
- According to the joint probability table:

	$X_{2}=$ Head	$X_{2}=$ Tail
$X_{1}=$ Head	$\frac{1}{4}$	$\frac{1}{4}$
$X_{1}=$ Tail	$\frac{1}{4}$	$\frac{1}{4}$

y	0	1	2
$\operatorname{Pr}(Y=y)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

- How would you find the distribution of Z, the number of heads obtained by tossing a fair coin for three times?

Road map

- Basic concepts.
- Independent events.
- Random variables.
- Descriptive measurements.

Descriptive measurements

- Consider a discrete random variable X with a sample space S, realizations $\left\{x_{i}\right\}_{i \in S}$, and a $\operatorname{pmf} \operatorname{Pr}(\cdot)$.
- The expected value (or mean) of X is

$$
\mu \equiv \mathbb{E}[X]=\sum_{i \in S} x_{i} \operatorname{Pr}\left(x_{i}\right) .
$$

- The variance of X is

$$
\sigma^{2} \equiv \operatorname{Var}(X) \equiv \mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) .
$$

- The standard deviation of X is $\sigma \equiv \sqrt{\sigma^{2}}$.

Descriptive measurements: example 1

- Let X be the outcome of rolling a dice, then the pmf is $\operatorname{Pr}(x)=\frac{1}{6}$ for all $x=1,2, \ldots, 6$.
- The expected value of X is

$$
\mathbb{E}[X] \equiv \sum_{i=1}^{6} x_{i} \operatorname{Pr}\left(x_{i}\right)=\frac{1}{6}(1+2+\cdots+6)=3.5 .
$$

- The variance of X is

$$
\begin{aligned}
\operatorname{Var}(X) & \equiv \sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) \\
& =\frac{1}{6}\left[(-2.5)^{2}+(-1.5)^{2}+\cdots+2.5^{2}\right] \approx 2.92
\end{aligned}
$$

- The standard deviation of X is $\sqrt{2.92} \approx 1.71$.

Descriptive measurements: example 2

- Let X be the outcome of rolling an unfair dice:

x_{i}	1	2	3	4	5	6
$\operatorname{Pr}\left(x_{i}\right)$	0.2	0.2	0.2	0.15	0.15	0.1

- The expected value of X is

$$
\begin{aligned}
\mathbb{E}[X] & \equiv \sum_{i=1}^{6} x_{i} \operatorname{Pr}\left(x_{i}\right) \\
& =1 \times 0.2+2 \times 0.2+3 \times 0.2+4 \times 0.15+5 \times 0.15+6 \times 0.1 \\
& =3.15
\end{aligned}
$$

- Note that $3.15<3.5$, the expected value of rolling a fair dice. Why?

Descriptive measurements: example 2

- Let X be the outcome of rolling an unfair dice:

x_{i}	1	2	3	4	5	6
$\operatorname{Pr}\left(x_{i}\right)$	0.2	0.2	0.2	0.15	0.15	0.1

- The expected value of X is $\mu=3.15$.
- The variance of X is

$$
\begin{aligned}
\operatorname{Var}(X) \equiv & \sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) \\
= & (-2.15)^{2} \times 0.2+(-1.15)^{2} \times 0.2+(-0.15)^{2} \times 0.2 \\
& +0.85^{2} \times 0.15+1.85^{2} \times 0.15+2.85^{2} \times 0.1 \\
\approx & 2.6275
\end{aligned}
$$

- Note that $2.6275<2.92$, the variance of rolling a fair dice. Why?
- The standard deviation of X is $\sqrt{2.6275} \approx 1.62$.

Descriptive measurements: using R

- Let X be the outcome of rolling an unfair dice:

x_{i}	1	2	3	4	5	6
$\operatorname{Pr}\left(x_{i}\right)$	0.2	0.2	0.2	0.15	0.15	0.1

$>x<-1: 6$
$>p<-c(0.2,0.2,0.2,0.15,0.15,0.1)$
$>$ mu.x <- sum (x * p) \# expected value
> var.x <- sum((x - mu.x) ~ 2 * p) \# variance
> sd.x <- sqrt(var.x) \# standard deviation

