GMBA 7098: Statistics and Data Analysis (Fall 2014)

Introduction to Probability (2)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

October 20, 2014

Road map

- Application: inventory management.
- Continuous random variables.
- Normal distribution.

Application: inventory management

- Suppose you are selling apples.
- The unit purchasing cost is $\$ 2$.
- The unit selling price is $\$ 10$.
- Question: How many apples to prepare at the beginning of each day?
- Too many is not good: Leftovers are valueless.
- Too few is not good: There are lost sales.
- According to your historical sales records, you predict that tomorrow's demand is X, whose distribution is summarized below:

x_{i}	0	1	2	3	4	5	6	7	8
$\operatorname{Pr}\left(x_{i}\right)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

Daily demand distribution

- The probability distribution is depicted.
- A distribution with a long tail at the right is said to be positively skewed.
- It is negatively skewed if there is a long tail at the left.
- Otherwise, it is symmetric.

Inventory decisions

- Researchers have found efficient ways to determine the optimal (profit-maximizing) stocking level for any demand distribution.
- This should be discussed in courses like Operations and Service Management.
- For our example, at least we may try all the possible actions.
- Suppose the stocking level is $y, y=0,1, \ldots, 8$, what is the expected profit $f(y)$?
- Then we choose the stocking level with the highest expected profit.

Expected profit function

- If $y=0$, obviously $f(y)=0$.
- If $y=1$:
- With probability $0.06, X=0$ and we lose $0-2=-2$ dollars.
- With probability $0.94, X \geq 1$ and we earn $10-2=8$ dollars.
- The expected profit is $(-2) \times 0.06+8 \times 0.94=7.4$ dollars.

Daily demand distribution

Expected profit function

- If $y=2$:
- With probability $0.06, X=0$ and we lose $0-4=-4$ dollars.
- With probability $0.15, X=1$ and we earn $10-4=6$ dollars.
- With probability $0.79, X \geq 2$ and we earn $20-4=16$ dollars.
- The expected profit is
$(-4) \times 0.06+6 \times 0.15+16 \times 0.79=13.3$ dollars.
- By repeating this on $y=3,4, \ldots, 8$, we may fully derive the expected profit function $f(y)$.

Daily demand distribution

Optimizing the inventory decision

Expected profit function

- The optimal stocking level is 4 .
- What if the unit production cost is not $\$ 2$?

Impact of the unit cost

Expected profit functions

- For unit costs $1,2,3$, or 4 dollars, the optimal stocking levels are 5, 4, 4 , and 3 , respectively.
- Does the optimal stocking level always decrease when the unit cost increase?
- Anyway, understanding probability allows us to make better decisions!

Road map

- Application: inventory management.
- Continuous random variables.
- Normal distribution.

Continuous random variables

- Some random variables are continuous.
- The value of a continuous random variable is measured, not counted.
- E.g., the number of students in our classroom when then next lecture starts is discrete.
- E.g., the temperature of our classroom at that time is continuous.
- For a continuous RV, its possible values typically lie in an interval.
- Let X be the temperature (in Celsius) of our classroom when the next lecture starts. Then $X \in[0,50]$.
- We are interested in knowing the following quantities:
- $\operatorname{Pr}(X=20), \operatorname{Pr}(18 \leq X \leq 22), \operatorname{Pr}(X \geq 30), \operatorname{Pr}(X \leq 12)$, etc.

Continuous random variables

- As another example, consider the number of courses taken by a student in this semester.
- Let's label students in this class as $1,2, \ldots$, and n.
- Let X_{i} be the number of courses taken by student i.
- Obviously, X_{i} is discrete.
- However, their mean $\bar{x}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ is (approximately) continuous!
- In statistics, the understanding of continuous random variables is much more important than that of discrete ones.

Rolling a multi-face dice

- Let's start by, again, rolling a dice.
- Let X_{1} be the outcome of rolling a fair "normal" dice, then we have $\operatorname{Pr}\left(X_{1}=x\right)=\frac{1}{6}$ for $x=1,2, \ldots, 6$.
- Let X_{2} be the outcome of rolling a fair 12 -face dice with sample space $S_{2}=\left\{\frac{1}{2}, 1, \ldots, \frac{11}{2}, 6\right\}$, then we have $\operatorname{Pr}\left(X_{2}=x\right)=\frac{1}{12}$ for $x \in S_{2}$.
- Let X_{3} be the outcome of rolling a fair 24 -face dice with sample space $S_{3}=\left\{\frac{1}{4}, \frac{1}{2}, \ldots, \frac{23}{4}, 6\right\}$, then we have $\operatorname{Pr}\left(X_{3}=x\right)=\frac{1}{24}$ for $x \in S_{3}$.

Rolling a multi-face dice

- Let X_{4} be the outcome of rolling a fair n-face dice, then we have $\operatorname{Pr}\left(X_{4}=x\right)=\frac{1}{n}$ for $x \in S_{4}=\left\{\frac{6}{n}, \frac{12}{n}, \ldots, 6\right\}$.
- When n approaches infinity, we may get any value within 0 and 6 . However, the probability of getting each value is 0 .
- There are infinitely many possible values, but the total probability is 1. Therefore, the probability of getting each value can only be 0 .
- In general, for any continuous random variable X, we have

$$
\operatorname{Pr}(X=x)=0
$$

for all x !

Continuous probability distribution

- Consider the example of randomly generating a value in $[0,6]$ again.
- Let the outcome be X.
- All values in $[0,6]$ are equally likely to be observed.
- We know the probability of getting exactly 2 is $0 ; \operatorname{Pr}(X=2)=0$.
- What is the probability of getting no greater than $2, \operatorname{Pr}(X \leq 2) ?^{1}$

[^0]
Continuous probability distribution

- Obviously, $\operatorname{Pr}(X \leq 2)=\frac{1}{3}$.
- Similarly, we have:
- $\operatorname{Pr}(X \leq 3)=\frac{1}{2}$.
- $\operatorname{Pr}(X \geq 4.5)=\frac{1}{4}$.
- $\operatorname{Pr}(3 \leq X \leq 4)=\frac{1}{6}$.
- For a continuous random variable:
- A single value has no probability.
- An interval has a probability!
- We need a formal way to describe a continuous distribution.

Probability density functions

- A continuous distribution is described by a probability density functions (pdf).
- A pdf is typically denoted by $f(x)$, where x is a possible value.
- For each possible value x, the function gives the probability density. It is not a probability!
- What is that "density" for?
- For a discrete distribution, we define a probability mass function.
- Accumulating density gives us mass; accumulating probability density gives us probability.
- For any continuous random variable $X \in[a, b]$, its pdf $f(x)$ satisfies

$$
\int_{a}^{b} f(x) d x=1
$$

i.e., the area under $f(\cdot)$ within $[a, b]$ must be 1 .

Probability density functions

- Let X be the outcome of randomly generating a value in $[0,6]$.
- All values in $[0,6]$ are equally likely to be observed.
- They all have the same probability density: $f(x)=y$ for all $x \in[0,6]$.
- What is the value of y ?
- The area under $f(\cdot)$ within $[0,6]$ must be 1 :

We need $6 y=1$, i.e., $f(x)=y=\frac{1}{6} \approx 0.167$.

Uniform distribution

- The random variable X is very special:
- All possible values are equally likely to occur.
- For a continuous random variable of this property, we say it follows a (continuous) uniform distribution.
- If a discrete random variable possesses this property (e.g., rolling a fair dice), we say it follows a discrete uniform distribution.
- When do we use a uniform random variable?
- When we want to draw one from a population fairly (i.e., randomly).
- When we sample from a population.

Road map

- Application: inventory management.
- Continuous random variables.
- Normal distribution.

Central tendency

- In practice, typically data do not spread uniformly.
- Values tend to be close to the center.
- Natural variables: heights of people, weights of dogs, lengths of leaves, temperature of a city, etc.
- Performance: number of cars crossing a bridge, sales made by salespeople, consumer demands, student grades, etc.
- All kinds of errors: estimation errors for consumer demand, differences from a manufacturing standard, etc.
- We need a distribution with such a central tendency.

Normal distribution

- The normal distribution is the most important distribution in statistics (and many other fields).
- If a random variable follows the normal distribution, most "normal data" will be close to the center.
- It is symmetric and bell-shaped.

Normal distribution

- Mathematically, a random variable X follows a normal distribution with mean μ and standard deviation σ if its pdf is

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad \text { for all } x \in(-\infty, \infty)
$$

- Well... Anyway, you know there is a definition.
- We write $X \sim \mathrm{ND}(\mu, \sigma)$.
- Some important properties of the normal distribution:
- Its peak locates at its mean (expected value).
- Its mean equals its median.
- The larger the standard deviation, the flatter the curve.

Altering normal distributions

- Increasing the expected value μ shifts the curve to the right.
- Increasing the standard deviation σ makes the curve flatter.

Standard normal distributions

- The standard normal distribution, sometimes denoted as $\phi(x)$, is a normal distribution with $\mu=0$ and $\sigma=1$.
- All normal distributions can be transformed to the standard normal distribution.

$$
\begin{aligned}
& \text { Proposition } 1 \\
& \text { If } X \sim \mathrm{ND}(\mu, \sigma) \text {, then } \\
& Z=\frac{X-\mu}{\sigma} \sim \mathrm{ND}(0,1) .
\end{aligned}
$$

- This transformation is called
 standardization.

Standard normal distributions

- Consider a set of data.
- For a value x, we define its z-score as $z=\frac{x-\mu}{\sigma}$.
- It measures how far this value is from the mean, using the standard deviation as the unit of measurement.
- E.g., if $z=2$, the value is 2 standard deviations above the mean.
- A z-score may be positive or negative.
- Is two σ away from the mean normal or not?

Quality control

- A seller sells candies in bags. She asks her son to put candies in bags and make each bag weigh 2 kg . No bag can weigh more than 2.2 kg or less than 1.8 kg .
- Her son, unfortunately, is careless.
- If X is the weight of a randomly drawn bag, $X \sim \mathrm{ND}(2,0.1)$.
- A bag that weighs 2.2 kg is two σ above the mean.
- The probability for a bag to be "bad" is

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 2.2 \text { or } X \leq 1.8) \\
= & \operatorname{Pr}(X \geq 2.2)+\operatorname{Pr}(X \leq 1.8)
\end{aligned}
$$

Quality control

- R helps us do the calculation.
- pnorm(q, mean, sd) finds $\operatorname{Pr}(X \leq q)$ for $X \sim \mathrm{ND}($ mean, sd).
- The probability for a bag to be "bad" is

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 2.2 \text { or } X \leq 1.8) \\
= & \operatorname{Pr}(X \geq 2.2)+\operatorname{Pr}(X \leq 1.8) \\
= & \operatorname{pnorm}(1.8,2,0.1) * 2 \\
\approx & 5 \% .
\end{aligned}
$$

- Note that $\operatorname{Pr}(X \geq 2.2)=\operatorname{Pr}(X \leq 1.8)$!
- Thanks to symmetry, we have

$\operatorname{Pr}(X \leq \mu-d)=\operatorname{Pr}(X \geq \mu+d)$ for all d if $X \sim \mathrm{ND}(\mu, \sigma)$.

Quality control

- With probability 5%, a bag does not pass the quality standard, i.e., either too heavy or too light.
- Whether 5% is large depends.
- As long as the distribution is normal:

Quality standard	Yield rate
One σ	68%
Two σ	95%
Three σ	99.7%
Six σ	99.9997%

Cumulative distribution functions

- It is so often that we need to calculate the probability for a random variable to be smaller than a given value.
- For a random variable, we define

$$
F(x)=\operatorname{Pr}(X \leq x)
$$

as the cumulative distribution functions (cdf).

- In the previous example, we have
 $F(1.8) \approx 5 \%$ and $F(2.2) \approx 95 \%$.

[^0]: ${ }^{1}$ Because $\operatorname{Pr}(X=2)=0$, we have $\operatorname{Pr}(X \leq 2)=\operatorname{Pr}(X<2)$. In other words, "less than" and "no greater than" are the same regarding probabilities.

